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Abstract—Text semantic hashing maps a text to a compact
binary code, which is an important part of information retrieval
and language processing. There are two main challenges for this
task, one is to make the hash codes express the hierarchical
category information for improving the retrieval accuracy, and
the other is how to deal with the hard samples. In this paper,
we adopt the Bernoulli VAE to encode the text semantics and
design the parent and child level contrastive losses to learn the
hierarchical information of the text. To find the hard samples,
for each category, we introduce a latent sphere space to split the
majority samples and hard samples, where the center and radius
are dynamically calculated based on the semantic distance between
samples. For the hard samples, we introduce the de-confusion
loss to pull them close to the center. We conduct experiments
on three datasets and the results show that the proposed model
outperforms the SOTA baselines. The ablation experiments show
that the category constraints and the de-confusion loss contribute
to the model performance. The results of t-SNE also show that the
hash codes learned by our model reflect high category differences.

Index Terms—text hashing, hard sample, hierarchical categories

I. INTRODUCTION

Text semantic hashing aims to map a text to a compact

binary code that represents the meaning of the whole text and

can be searched by Hamming distance [1], [2]. The hierarchical

classification is an important form of organizing documents [3],

[4], [5], such as in ACM Computer Classification System, 1

International Patent Classification2. These hierarchical category

information shows the associations and differences between

documents from a macro perspective. Thus it is important

to encode the hierarchical category information into the hash

codes so that they contain the latent common characteristics

of the category [6], [7].

Some methods embed the category information by the

additional prediction of text categories [8], [9] or comparison

loss [10] in the training phase. These methods only use the

flat category information without considering the hierarchical

category. To encode the hierarchical category information, the

Intra-Category Aware Hierarchical Document Hashing(IHDH)
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method jointly predicts the probabilities of the child and parent

categories [11]. Another method Hierarchical Generative Model

(HierHash) introduces hierarchical prototypes to construct a

hierarchical prior distribution [12]. These methods do not deal

with the hard sample issues, which results in incorrect retrieval

results. The hard samples refer to those who have the similar

semantics to the samples in different categories, or have the

dissimilar semantics to most samples in the same category. For

instance, a document that actually belonging to the category

”Atheism” with many religion-related statements may be close

to some documents belonging to the category ”Religion”

in the hash space. Since the categories are independent of

specific documents, i.e., there are the dissimilar texts on

semantics within one category and similar ones in different

categories, ignoring these hard samples will weakens the

category differences of hash codes.

In this paper, we propose the De-confusion Hierarchical text

Semantic Hashing model (DSH). Based on the hierarchical

category, we adopt the multivariate contrastive loss to bring

samples in the same category closer together while separating

those in different categories in the hash space. To find the

hard samples for a category, we introduce a sphere space to

cover the majority samples, the latent center and radius of

this sphere space are calculated dynamically by the samples in

this category. The samples outside the space are treated as the

hard samples. Then a de-confusion loss is adopted to constrain

the hard samples to be close to their own category center

and away from the centers of other categories. The results

on three datasets show that the proposed model outperforms

all baselines. The ablation experiments show that both the

hierarchical category constraints and the de-confusion loss
improve the model performance.

II. METHODOLOGY

A. Problem and Framework

For a text x and its parent category label yl and the child

category label yp, each child category corresponds to only

one parent category, our task aims to learn a function that

maps x to a n-dimensional hash code h ∈ {0, 1}n. The hash

codes should be associated with the category information and

reflect the semantic differences between texts. Our proposed

method includes three parts, as shown in Fig. 1. The first part

learns the text semantics by reconstructing the text. The second
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Fig. 1. The DSH model architecture.

part brings samples within the same category closer together

and separates them from those in other categories. The third

part identifies the hard samples according to the dynamically

calculated latent category center and hard radius, then pulls

these samples closer to the center.

B. Bernoulli Variational Auto-encoder

We adopt Bernoulli VAE as the encoder-decoder network

since the Gaussian distribution can be used to create arbitrary

distributions through the rational mapping functions, including

the special Bernoulli case for the text hashing [13].

The encoding process, denoted by fφ(h|x), first maps an

input text x to a continuous vector x, each dimension in x is

treated as the parameter of a Bernoulli distribution. Then we

can sample each dimension of hash code h based on x:

hi = sign(xi) =

{
1 if xi > 0.5

0 otherwise
(1)

The decoding process reconstructs the text from the hash

code, denoted by fθ(x|h). According to the Bayes’ theorem,

the above two processes can be optimized simultaneously by

maximizing the following loss [14]:

Lvae(θ, φ) = Efφ(h|x)[log fθ(x|h)]−KL(fφ(h|x)||p(h)) (2)

where, the Multidimensional Bernoulli distribution p(h) is

the assumed distribution of h, i.e., h ∼ Bernoulli(ρ), ρ is the

parameter vector of the distribution, KL is the Kullback-Leibler

divergence between two probability distributions.

Since the child category provides the base category infor-

mation, we also use h to predict the child category:

ŷli =
exp(hTEyei + bi)∑|Cl|

k=1 exp(h
TEyek + bk)

(3)

where Ey is the parameter matrices, and ei is the one-hot

vector corresponding to the i-th category, bi is the bias term.

Let ŷl denote the predicted child category for x, we construct

the category loss as follows:

Ly = CrossEntropy(ŷl, yl) (4)

C. Hierarchical Category Constraint

To differentiate the semantically similar samples with differ-

ent categories and simultaneously aggregate the semantically

dissimilar samples within the same category, we introduce

the category constraints that include two contrastive losses:

the parent-level and the child-level contrastive loss. We first

show the loss of base contrastive learning. Let x, x+, x−

denote the anchor sample, positive sample, and negative sample,

respectively, and x denote the continuous embedding of x, the

contrastive loss can be calculated as follows:

L(x, x+, x−,m) = relu
(
d(x,x+)− d(x,x−) +m

)
(5)

where, m is the margin hyper-parameter, d(·, ·) is the distance

metric. To enable the gradient calculation, we use Euclidean

distance as d(·, ·) rather than the Hamming distance.

For the parent-level contrastive loss Lp
t , the positive sample

set X+
p contains the samples that have different child categories

but the same parent category with x, and the negative sample set

X−
p contains the samples that have different parent categories

with x. Specially, the Lp
t is defined as follows:

Lp
t = Ex+∈X+

p ,x−∈X−
p
L(x, x+, x−,mp) (6)

For the child-level contrastive loss Ll
t, the positive sample set

X+
l contains the samples that are in the same child category as

x, X−
l denotes the samples that have different child categories

with x. The formulation of Ll
t is:

Ll
t = Ex+∈X+

l ,x−∈X−
l
L(x, x+, x−,ml) (7)

The entire hierarchical category loss is transformed into an

objective function by the hyper-parameters α:

Lh = αLp
t + (1− α)Ll

t (8)

D. Hard Sample Constraint

The hard samples seriously affect the learning of hash space,

to deal with this, for each category, we compute a sphere

space for finding the hard samples, where the sphere space is

restricted by the latent center and radius, samples outside the

space are the hard samples. Then we constrain these samples

by a de-confusion loss,

Let C denote the set of samples that have the same category

with x. The center of category C, denoted as C, is located at

the average embeddings for the samples in C. We assume

the distance from samples to a category center follow a

Gaussian distribution N (μ, σ). The mean μ is calculated

as the expectation of the distance from all samples in this

category to the center: μ = Ex∈Cd(x,C). The variance σ is

calculated by σ = sqrt
(
Ex∈C(d(x,C)− μ)2

)
. Then, a hard

radius R = μ+ λσ is computed to pick up the hard samples,

where λ is a hyper-parameter.

For a category C and its hard radius R, the hard samples

can be divided into two cases, named intra-class hard samples
and inter-class hard samples. The former refers to the samples

that belong to C while their distance to the category center

is larger than R. The latter refers to the samples that do not

belong to category C while the distance to the category center
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TABLE I
DATASET STATISTICS

Datasets Domain Train Test Parent Child Feature

20News News 11314 7532 7 20 2000
RCV1 News 39832 26556 3 29 31812
WOS Science 28089 18726 7 134 10000

is less than R. We introduce the de-confusion loss Ld to pull

hard samples close to their category centers while moving away

from from other centers. Let X l+
c , X l−

c denote the sample set

selected from the intra-class hard samples and the inter-class
hard samples based on the child category, respectively. Xp+

c

and Xp−
c denote the sample set selected according to the parent

category, respectively. Then, Ld can be calculated as following:

Ld = αLp
c + (1− α)Ll

c, (9)

Lp
c = Ex+∈Xp+

c ,x−∈Xp−
c

L(Cp, x
+, x−,mc

p), (10)

Ll
c = Ex+∈Xl+

c ,x−∈Xl−
c

L(Cl, x
+, x−,mc

l ) (11)

where, Lp
c and Ll

c are the de-confusion loss for the parent and

child categories with hyper-parameters mc
p and mc

l , respectively.

Cp and Cl refer to the parent and child category centers,

respectively.

E. Overall Objective

We optimize our DSH model by combining multiple ob-

jective functions, where β, γ, and ξ are hyper-parameters

representing the weights of each part:

LDSH = Lvae + βLy + γLh + ξLd, (12)

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

We use the hash codes for information retrieval and conduct

experiments on there benchmark datasets: 20Newsgroups

(20News)3, Reuters Corpus Volume I (RCV1)4, Web of Science

(WOS)5. Table I shows the details of datasets. We adopt

the widely used Precision@K and NDCG@K to evaluate the

performance of our model [15], [16], [11]. Precision@K is the

proportion of retrieved top K samples that have the same child

category with query. NDCG@K takes into account both the

relevance of the items and their positions in the ranking, giving

higher weight to results that appear earlier. As a regular way,

we use the hash codes of the test samples as queries and search

K similar samples in the training set by Hamming distance.

B. Comparison Methods and Training Details

We compare DSH with multiple baselines. SHTTM [6]

adopts tags and topic model for semantic hashing. VDSH-S

and VDSH-SP [8] use VAE to learn the hash codes. NASH-

DN-S [9] is a neural architecture for semantic hashing with

data-dependent noise decoding. GMSH-S, BMSH-S [15] and

PSH [10] are mixture-Prior based hashing methods. IHDH [11]

is the SOTA method with hierarchical category information.

3http://qwone.com/j̃ason/20Newsgroups/
4https://data.mendeley.com/datasets/9rw3vkcfy4/6
5https://scikit-learn.org/0.18/datasets/rcv1.html
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Fig. 2. Analysis of hard radius and K on Precision@100.

In our network, the MLP has 1000 neurons and leaky ReLU

activation units. To prevent over-fitting, we set a dropout

probability of 0.1 after the second layer [17]. We compute the

category centers and hard radius every 3 epochs. For the prior

Bernoulli distribution p(h) = Bernoulli(ρ), we set ρ = 0.5,

which can maximizes the information entropy of hash codes.

For the non-differentiable phenomenon of sample truncation,

we use the straight-through(ST) estimator[18] for gradient

estimation. We set a learning rate of 0.0005 and the maximum

number of epochs to 50, λ = 1, α = 0.55, β = 3, γ = 3, ξ = 1.

mp
h and mp

c are set to 0.01, ml
h and ml

c are set to 0.1.

C. Results

The results in Tab II show that DSH outperforms the

comparison methods including the SOTA method IHDH on

all hashing bits and datasets. What’s more, on the difficult

dataset WOS which contains more parent and child categories

than other datasets, DSH achieves the largest improvement

over the existing methods. To illustrate the stability of DSH,

we analyze the Precision@K on 20News under 64 bits with

different values of K. The results in Fig. 2 show that our model

outperforms the compared models at all listed K values.

To compare the different ways of applying hierarchical

information, we compare the results of IHDH-HC with DSH-

HC, where IHDH-HC is only trained by jointly predicting the

probabilities of the child and parent categories. DSH-HC is our

method trained only using the hierarchical loss. The results in

Table III show that DSH-HC outperforms the IHDH-HC by an

average of 0.61 on Precision@100 and 0.65 on NDCG@100.

This shows the advantage of our hierarchical loss.

D. Ablation Study and Hyperparameters Analysis

We conduct ablation experiments to show the effects of

two key losses: (1) w/o Lh refers to removing hierarchical
loss. (2) w/o Ld refers to removing the de-confusion loss.

Results in Table IV show that each loss plays an important

role, especially the hierarchical loss. When removing the

hierarchical loss, the average Precision@100(denoted as P)

and NDCG@100(denoted as N) of DSH are reduced by 2.9

and 3.0, respectively.

For the key hyperparameters: λ controls the hard radius

R. α controls the contributions of parent constraint and child

constraint in hierarchical loss. β, γ, ξ are used to balance the

loss in the overall objective. Results in Fig. 2 show that for

most datasets, a moderate λ such as 0 or 1 is reasonable, since

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on May 21,2025 at 07:49:02 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
COMPARISON RESULTS OF PRECISION@100 AND NDCG@100

Methods
WOS RCV1 20News

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

SHTTM 20.13/20.01 11.7/11.53 7.54/7.47 6.32/6.12 74.22/73.65 62.13/61.53 57.34/56.94 55.87/55.17 35.36/35.32 34.23/34.19 25.75/25.73 23.11/23.10
VDSH-S 36.44/36.08 50.95/50.57 51.12/50.79 51.85/51.55 86.11/83.51 88.12/85.62 88.85/86.47 89.44/87.13 66.10/65.92 70.89/70.81 70.29/70.26 71.87/71.84

VDSH-SP 37.45/37.18 52.31/52.17 51.44/51.99 52.73/52.98 85.21/82.33 87.62/84.72 88.25/85.31 89.14/86.03 66.30/64.32 69.20/69.73 70.39/70.28 70.77/70.85
NASH-DN-S 5.90/5.74 10.35/10.22 21.24/20.77 34.71/34.24 58.55/55.88 76.19/73.25 87.81/84.86 88.13/85.47 59.47/59.61 73.98/73.88 73.78/73.77 67.18/67.08

GMSH-S 44.23/44.22 53.55/53.31 56.20/55.21 53.56/53.09 85.11/83.12 86.42/84.12 85.34/83.62 84.27/82.34 69.99/69.81 70.32/70.08 69.73/69.69 68.21/68.11
BMSH-S 49.27/49.05 56.64/56.52 57.40/57.2 55.41/55.04 87.39/85.06 88.56/86.18 87.89/85.52 86.60/84.12 71.87/71.92 72.18/72.15 71.83/71.18 70.20/70.01

PSH-ARM 26.17/25.52 46.55/45.88 56.62/56.24 62.99/62.86 86.90/84.20 88.70/86.12 89.20/86.53 89.99/87.66 73.17/73.11 74.81/74.79 75.24/75.24 75.56/75.56
IHDH 50.00/49.64 58.51/58.25 62.42/62.27 63.77/63.67 87.44/85.07 88.74/86.66 89.24/86.63 90.12/87.74 73.60/73.59 75.58/75.59 76.14/76.14 76.42/76.41
ours 54.24/54.19 61.40/61.40 66.41/66.46 68.21/68.29 87.96/85.24 89.54/86.76 90.16/87.34 90.44/87.75 74.33/74.32 75.91/75.90 76.29/76.29 76.67/76.67

The results of baselines are from paper [11].

TABLE III
COMPARISON RESULTS ON DIFFERENT HIERARCHICAL SCHEMES.

Metrics & Methods 16bits 32bits 64bits 128bits

Precision@100
IHDH-HC 72.49 74.82 75.13 75.68
DSH-HC 73.65 75.25 75.75 75.92

NDCG@100
IHDH-HC 72.42 74.83 75.13 75.57
DSH-HC 73.63 75.25 75.75 75.93

TABLE IV
ABLATION STUDY.

Model
20News RCV1 WOS

P N P N P N

DSH 76.67 76.67 90.44 87.75 68.21 68.29
w/o Lh 71.91 71.88 89.08 86.29 65.56 65.54
w/o Ld 75.92 75.93 90.21 87.38 68.02 68.10

a large λ degrades the text reconstruction ability of the hashing

codes, while a small value may not separate the hard samples

within categories. Results in Fig. 3 also show that the model

is robust to parameters α, β, ξ over a large interval, such as

the range of α in [0.1, 0.8]. The DSH model is sensitive to γ
within interval [3, 10] since the strong hierarchical constraints

may break the reconstruction goal in Equation 2.
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Fig. 3. Loss weights analysis on Precision@100.

For the margin hyper-parameters, Fig. 4 shows that DSH is

robust to low mp. Appropriate values for ml can maintain the

clustering trend of parent categories while separating samples

within different child categories in hash space. High mc
p and

mc
l affect the text reconstruction and lead to low performance.
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Fig. 5. Visualization of the parent categories on three datasets.

E. Hash Space Visualization

We employ t-SNE [19] to visualize the distribution of hash

codes learned by DSH and IHDH. The results in Fig. 5 show

that the samples within same parent category (indicated by

the same color) are closer than those in different ones, while

the results of IHDH do not have this trend. This shows the

effectiveness of DSH in utilizing the hierarchical information.

IV. CONCLUSION

In this paper, we propose the Semantic Hashing model DSH.

We use the hierarchical category constraint to encode both the

text semantics and hierarchical category information into the

hash codes. Additionally, we introduce the latent center and

hard radius to represent the latent common characteristics of

each category. Then we identify the hard samples. We introduce

the de-confusion loss to draw back these hard samples to the

center. Experiments on three benchmark datasets show that

DSH outperforms all baselines.
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