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Abstract—Knowledge summarization task aims to summarize
the knowledge scattered in multiple documents for answering a
query. In this paper, we adopt the concept relation knowledge
base ConceptNet for the task and propose the ConceptNet inte-
grated summarization method CNSum, where the concepts are
adopted as a bridge to find the latent associations between the
query and segments in documents. Besides, a semantic mixture
mechanism is introduced to combine the concept-centered associ-
ations with the contextual semantics of segments for summariza-
tion. To evaluate the knowledge in summary without references,
we introduce a Question Answer (QA) based knowledge labeling
method to construct training samples. The training samples are
used for training a neural evaluation model. We compare CNSum
with multiple methods and large language models (LLMs). The
results show that CNSum outperforms these baselines. We also
evaluate the knowledge in the generated summaries by human
evaluation and our neural evaluation. The results show that
CNSum is also better than baselines on knowledge completeness.
Besides, these two evaluation results are highly correlated.

Index Terms—knowledge summarization, ConceptNet, neural
evaluation

I. INTRODUCTION

Query focused knowledge summarization (QFS) is widely

used in many application scenarios, such as the question and

answer site Quora1. A query may involves diverse knowledge

points that have no direct correlation with the query, which

makes the QFS task difficult. Although large language models

(LLMs) show good ability to summarize texts, it is difficult

to apply them for the task due to the limitations on the text

length and the high deployment overhead. The current methods

are in the form of two phases, i.e., the query-related segment

selection and the summary generation. For the first phase,

these methods select segments from the given documents by

the semantic similarity to query [1], [2], [3], [4] or train a

neural segment selector using the segments that have high

word overlap with the reference summary [5], [6]. For the

second phase, models such as BART [7] and Vicuna [8] can

be adopted to summarize the selected segments [6]. However,

some segments that play important roles in associating the
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query-related knowledge are overlooked by the above methods

since these segments have latent associations with query.

Another challenge is to evaluate the knowledge in sum-

maries without references since it is difficult to construct refer-

ences and label key knowledge in the practical scenarios. The

commonly used metrics are based on references and treat each

word equally. Such as ROUGE [9] and QA-based methods [10]

evaluate summaries by comparing the gram or word semantics

with references. There are also some reference-free metrics.

For example, the LLM based evaluation methods G-Eval[11]

and ChatGPT-ZS [12] provide the summary to a LLM and ask

it to generate a score. However, LLMs have its own challenges

including the large overhead and phantom issues.

To find the latent associations between query and segments,

inspired by human organizing the knowledge with concepts

and the concept associations are the basis for judgmental

thinking and reasoning, we adopt the concept associations

in ConceptNet to build the latent segment associations, as

well as using the word co-occurrences to build the direct

segment associations. Based on these associations, we use

Random Walk algorithm [13] to explore multi-hop segment

associations and select query related segments. Then the

concept-centered associations and the contextual semantics

of segments are mixed for generating the summaries. To

quantify the knowledge in summaries, we introduce a QA

based knowledge labeling method to construct pseudo-samples

for training a neural evaluation model. The experiments show

that our summarization method outperforms multiple baselines

and there is a high correlation between our neural evaluation

and human evaluation.

II. QUERY FOCUSED SUMMARIZATION

Given a query q and a document set D, the QFS task

generates a summary that captures the knowledge in D related

to q. The proposed ConceptNet integrated Summarization

method CNSum includes two phases: the segment selection

phase and summarization phase, as shown in Fig.1.

A. Concept Associations based Segment Selection.

The following discussions focus on analyzing segments,

i.e., paragraphs, as they are more informative than sentences.

In order to select query-related segments, we construct a

query sensitive association graph on segments, as shown in
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Fig. 1. Two-phase summary generation framework.

the bottom of Fig.1, where the direct associations are based

on the word co-occurrences and the latent associations are

constructed by the conceptual linkage in ConceptNet. Let

Gq = (V,Ew, Ec) denote the graph, where the node set

V = {q, v1, v2, . . . , vN} includes the query q and the segments

vi in D. The weighted edges include the direct and latent as-

sociations between nodes, denoted by Ew and Ec ∈ R|V |∗|V |,
respectively.

The q-sensitive Direct Associations Ew. Nouns often play

important roles in segments. So we focus on the query related

nouns to build the direct associations Ew. We introduce a

function N(x) to find the nouns in a given text x. For any

given noun k, the query related weight wq
k is computed against

its relevance to N(q):

wq
k = maxk′∈N(q)((sim(k, k

′
) ≥ α)?sim(k, k

′
) : 0) (1)

Here, sim() computes the semantic similarity between two

nouns, and α is a threshold to ignore the less relevant nouns.

An edge is established between vi and vj ∈ V if they have

the same nouns. The weight Ew
ij of this edge is the sum of

the weights of all co-occurring nouns:

Ew
ij =

∑
k∈N(vi)∩N(vj)

wq
k (2)

The q-sensitive latent Associations Ec. We use the query

related concepts in ConceptNet to build the latent associations

Ec. Let C(x) denote a function that returns the concepts

appearing in both text x and ConceptNet. The query related

concepts CN(q) include C(q) as well as their neighbor con-

cepts in ConceptNet. The weight of any concept c ∈ CN(q)
involves two parts: the weight of concept in query that has

paths in ConceptNet to it, and the length of the path. We use

PyTextRank[14] to compute the weight wc′ of concept c
′

in

C(q). Then for each c ∈ CN(q), its weight wq
c is computed

by equation (3), where len(c, c
′
) denotes the minimum path

length between c and c
′

in ConceptNet:

wq
c = maxc′∈C(q)(

wc′

len(c, c′) + 1
) (3)

Segment vi and vj are associated if their concepts have

a path in ConceptNet. Let I (ci, cj) denote an indicative

function, if there is a path between the concepts ci and cj , then

I (ci, cj)=1, otherwise I (ci, cj)=0. The association weight Ec
ij

is computed by the weights of the linked concepts in vi and

vj , where ci ∈ C(vi), cj ∈ C(vj):

Ec
ij =

∑
∀I(ci,cj)=1

(wq
ci + wq

cj )/2 (4)

Segment Selection. In order to jointly utilize the latent and

direct associations for segment selection, we combine Ew to-

gether with Ec, denoted as E = Norm (Ew)+βNorm (Ec),
where, β is a hyper parameter to control the effects of the

latent associations, Norm() is the row normalization. Then

the matrix E is converted to a transition matrix by the normal-

ization operation, based on which the Random Walk algorithm

[13] is adopted to explore the multi-hop segment associations.

By the iterations of random walks, we get the importance score

for each segment and select the top-M segments {v1, · · · , vM}
as the final segments.

B. Multiple Semantics Mixture for Summarization

We adopt an encoder-decoder architecture for summariza-

tion. A semantics mixture mechanism is introduced between

the encoder and decoder for combining the contextual seman-

tics of segments with their concept-centered associations.

Let xi denote the text of segment vi in the selected

segments. To obtain the contextual semantics of xi, we first

encode q and the selected segments for obtaining the vector xie

of the e-th word in xi, then the contextual segment semantic

vector xi is computed as the mean of word vectors it contains:

xi =
∑li

e=0xie/li, where li is the length of segment text. To

obtain the concept-centered associations of these segments,

the segment associations Êw and Êc for the M segments are

pruned from Ew and Ec. Then we combine Êw and Êc by:

Ê = Norm(Êw) + γNorm(Êc) (5)

We incorporate the concept-centered associations in Ê into

the contextual semantics of segments, as depicted in equation

(6), where Nb (xi) denotes the text set of segments that have

associations with the i− th segment in Ê, eij is the attention

weight predicted by an MLP layer, i.e., eij = MLP (xi;xj).

xi = xi +
∑

xj∈Nb(xi)
(

e(eij+Êij)∑
j e

(eij+Êij)
)xj (6)

Next, the combined segment semantics are merged to the

word vector xie = LayerNorm(W1 ∗Relu(W2(xi + xie))),
where, LayerNorm () is layer normalization, Relu () is the

activation function and W1,W2 are the network weights.

The decoder receives all word vectors xie and generates

summary relying on the previously generated text, query and

the selected segments.

III. KNOWLEDGE EVALUATION

To evaluate the knowledge in summaries, we construct train-

ing samples by labeling the knowledge completeness to train

our Neural Knowledge Evaluation model(NeuKE). For each

reference summary, we generate the pseudo-summaries by

perturbing its sentences, where some knowledge are dropped
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or replaced. Then we generate a set of questions based on the

reference. With the help of a QA model, the pseudo-summaries

can be labeled by the above question set.

Pseudo-summary Generation. For a reference summary

y, its pseudo-summary set Dy = {t1, t2, · · · } is obtained by

the following operations: 1) Knowledge Enhancement. Adding

the sentences that are randomly selected from the source

documents to y. 2) Knowledge Reduction. Randomly delete

some sentences in y; Generating the summaries from each

source document by the pre-trained summarization model.

These summaries have less knowledge than y. 3) Knowledge

Replacement. Randomly replace some sentences in y with

the sentences from the source documents. 4) Knowledge

Transformation. Replacing some nouns and verbs in y with

their synonyms obtained from a lexical database WordNet [15].

Question Set Construction. We use spacy [16] to select

noun phrases in the reference y as answers. Based on these

phrases, we generate multiple questions using a t5-based

QG model [17]. We use a QA model 2 to filter out the

questions that can not be correctly answered by the reference

y, and get the final question set Qy = {qi, ai, pi}Ri=1, where

ai, pi = QA (y, qi), qi, ai and pi denote the question, the

correct answer, and the confidence probability, respectively,

R is the size of the question set.

Pseudo-summary Labeling. To label the knowledge com-

pleteness of pseudo-summaries. For a pseudo-summary t ∈
Dy and a question qi in Qy , we use qi to check the knowledge

in t, denoted as âi, p̂i = QA (t, qi). Then the check result cti
of qi is computed by the correctness of the answers and the

difference of confidence probabilities:

cti =

{
min (p̂i/pi, 1) if ai = âi

0 otherwise
(7)

The knowledge completeness label ct for t is obtained by

aggregating the check results of all questions in Qy:

ct =
∑R

i=1
cti/R. (8)

Since the pseudo-summaries generated by synonyms replace-

ment have the same semantics as the reference, we set ct = 1.

The evaluation model NeuKE. NeuKE includes the

roberta-base encoder [18] and an MLP layer. We concatenate

a special character [CLS], q and a pseudo-summary t, i.e.

[CLS, q, t] as the input. The knowledge completeness is

predicted by the MLP based on the embedding of CLS =
Enc([CLS, q, t]), where Enc() is the encoder. We pre-train

NeuKE with the cross-entropy loss on a QA corpus SQuAD2.0

[19], and fine-tune NeuKE using the Mean Square Error loss

on the labeled pseudo-summaries.

IV. EXPERIMENTS

A. Datasets and Metrics

We use the benchmark datasets DUC2005-20073 for exper-

iments. Each dataset contains 45-50 queries, and each query

corresponds to 30 documents. Following the commonly used

2https://huggingface.co/deepset/roberta-base-squad2
3https://duc.nist.gov/

mode of data slicing, when DUC2007 is used for testing,

DUC2005 and DUC2006 are used for training and validating.

When DUC2006 is used for testing, other two sets are used for

training and validating. We evaluate results by the gram based

metric ROUGE and the semantic metric BERTScore[20].

B. CNSum Implementations and comparison methods

When constructing the association graph, we set α=0.3, and

use spacy [16] to obtain the nouns and their embeddings.

The sim() refers to the cosine similarity. In most cases, a

concept associates many concepts within one-hop in Concept-
Net, which is enough to build multi-hop associations between

segments, thus we focus on the direct neighbor concepts.

For the segment selection, we set β=0.2 and M=20. For the

summary generation, we set γ as 0.1 for DUC2007 and 0.2 for

DUC2006. We adopt the BART-base model [7] pre-trained on

Multi-News[21] and CNN/DailyMail[22] datasets as the base

model, and freeze the parameters of encoder in BART and

train the model with a learning rate of 2e-5.

We select the following methods for comparison: BERTQA
and BERTMRC [2] train a QA model for selecting sentences.

QUERYSUM [2] applies a series of rules to filter sentences.

BART-CAQ [24] first selects segments by a QA model and

then summarizes the segments. PQSUM [25] generates a

summary for each document in document set, and uses a

QA model to rank sentences. QFS-CL [26] constructs sam-

ples of varying quality by LLM and adopts the contrastive

learning to train the summarization model. MARGE [6]

constructs pseudo samples for training the summarization

model. MARGE-MN and MARGE-CD represent the model

trained on Multi-News[21] and CNN/DailyMail[22] datasets,

respectively. QFS-BART[27] utilizes the results of QA model

to focus on key words during the decoding process. Con-
QFS [28] restricts the token distribution of the summaries to

conform to the constraints. Vicuna [8] and ChatGPT [29] are

LLMs that show good performance on multiple tasks. For the

above methods, when the input length is limited, we select the

query-related segments as the input by their cosine similarity

to query.

C. Results

The main comparison results are shown in Table I, where the

first block is for the extractive methods and the second block

for the abstractive methods. The R-1, R-2, R-SU4 and BS

stand for the F1 of ROUGE-1, ROUGE-2, ROUGE-SU4 and

BERTScore, respectively. We can see that CNSum achieves

higher scores than the strong extractive method QUERYSUM

on ROUGE-2 and ROUGE-SU4, and outperforms all ab-

stractive methods. It also shows that LLMs still have a gap

compared to the task-specific models.

The Ablation Studies. We evaluate the effects of the

segment selection strategy, semantics mixture mechanism, and

ConceptNet. The results are shown in Table II. In the -SS

setting, we select segments by the cosine similarity between

the embeddings of segments and query, where the embeddings

are obtained by BERT[30]. In the -GA setting, we remove the
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TABLE I
COMPARISON RESULTS OF THE SUMMARIZATION METHODS.

Models
DUC2006 DUC2007

R-1 R-2 R-SU4 BS R-1 R-2 R-SU4 BS
BERTQA* 38.6 8.4 13.9 – 39.8 10 14.9 –
BERTMRC* 39.6 7.8 13.6 – 39.9 8.9 14.3 –
QUERYSUM* 41.6 9.5 15.3 – 43.3 11.6 16.8 –
BART-CAQ* 38.3 7.7 12.9 – 40.5 9.2 14.4 –
PQSUM* 40.8 9.4 14.8 – 42.2 10.8 16.0 –
QFS-CL – – – – 40.2 16.1 – –
MARGE-MN 39.1 9.1 14.3 0.826 42.1 11.7 16.5 0.827
MARGE-CD 40.2 9.7 15.1 0.833 42.5 12 16.9 0.834
QFS-BART 39.4 8.6 14.1 – 39.2 9.4 14.3 –
Con-QFS 39.8 8.1 13.6 0.818 38.3 9.70 14.0 0.821
CNSum 41.3 10.5 16.0 0.855 42.9 12.3 17.3 0.854
Vicuna 38.04 9.3 14.2 0.852 38.8 10.8 15.4 0.853
ChatGPT3.5 40.8 9.3 14.6 0.854 41.3 10.5 15.5 0.853

The results marked with ’*’ are taken from the paper [6]. The results of QFS-CL and
QFS-BART are taken from the origin papers.

TABLE II
ABLATION RESULTS

Model
DUC2006 DUC2007

R-1 R-2 R-SU4 R-1 R-2 R-SU4
CNSum 41.3 10.5 16.0 42.9 12.3 17.3

-SS -0.6 -0.4 -0.6 -1.1 -0.7 -0.7
-GA -0.9 -0.4 -0.4 -0.9 -0.7 -0.6
-CN -1.7 -1 -1.1 -1.5 -0.7 -0.6

latent associations Êc in semantics mixture mechanism. In

the -CN setting, we eliminate the effects of ConceptNet in

all phases. The results indicate that all the three components

contribute to the model performance, where the conceptual

knowledge plays the most crucial role.

hyper-parameter analysis. The hyper-parameter β and

γ reflect the effects of conceptual knowledge for segment

selection and summarization, respectively. The higher, the

more effects contributed by ConceptNet. As shown in Fig.

2, introducing conceptual knowledge benefits the model per-

formance. But the moderate small values are recommended

because most of the query related knowledge can be found by

the word-level direct associations.

Human Evaluation. We select 50 of the total 95 samples to

five annotators who are highly educated for human evaluation.

Each annotator provides a score ranging from 0 to 5 on the

following dimensions: 1) Knowledge completeness(Kc)-The

summaries should contain enough knowledge to answer the

queries. 2) Fluency(Flu)-The summaries should not contain

grammatical errors, spelling mistakes. 3) Conciseness(Con)-

The summaries do not contain irrelevant information. Since

MARGE-CD and Vicuna show good results on ROUGE

and BERTScore, we choose them for comparison. We use

Krippendorff’s alpha coefficient to measure the inter-annotator

agreements, and the values are 0.44 for knowledge com-

pleteness, 0.31 for fluency, 0.35 for conciseness, which are

acceptable agreements [31], [32]. The results in Table III show

that CNSum outperforms MARGE-CD and Vicuna on several

dimensions. Unsurprisingly, Vicuna demonstrates a human-

level ability in terms of language fluency.

Evaluation by NeuKE To validate the knowledge evalua-

tion capability of NeuKE, we compared it with ROUGE and

SummaCConv [33] by the correlation to human. SummaC-

Conv evaluates summaries by computing the entailment scores
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Fig. 2. Hyper-parameter analysis.

TABLE III
HUMAN EVALUATION RESULTS

Model
DUC2006 DUC2007

Kc Flu Con Kc Flu Con
CNSum 3.97 3.73 4.06 3.74 3.64 3.89

MARGE-CD 3.40 3.42 3.71 3.19 3.21 3.46
Vicuna 3.60 3.87 3.81 3.37 4 3.78
GOLD 4.36 4.18 4.39 4.25 4.03 4.17

1 GOLD is for the reference summaries.

TABLE IV
CORRELATION COMPARISON RESULTS OF EVALUATION METRICS.

Metric
DUC2006+DUC2007
Ken Spe Pea

with
references

R-1 7.6 11.2 16.8
R-2 7.1 10.4 12.2
R-SU4 9.6 13.9 18.5
BERTScore 20.5 28.6 29.4

w/o references
SummaCConv 9.9 13.9 7.7
NeuKE 18.9 28.5 27.5

TABLE V
COMPARISON RESULTS BY NEUKE

Models DUC2006 DUC2007
MARGE-MN 0.26 0.51
MARGE-CD 0.30 0.52

Con-QFS 0.41 0.63
Vicuna 0.58 0.63

CNSum 0.68 0.72
GOLD 0.87 0.95

between the documents and each sentence in the summary.

Based on the human evaluation results of knowledge com-

pleteness on the generated summaries, we adopt the Kendall’s
tau rank (Ken for short), Spearman (Spe for shot) and Pearson
(Pea for short) coefficient to measure the correlation. The

results in Table IV show that NeuKE outperforms ROUGE

and SummaCConv on all coefficients. Then we compare the

summarization model CNSum with the baseline methods by

NeuKE. The results in Table V indicate that CNSum outper-

forms other methods on DUC2006 and DUC2007.

V. CONCLUSIONS

This paper proposes the knowledge summarization model

CNSum and the evaluation model NeuKE. CNSum incorpo-

rates the conceptual knowledge to build the latent associations

between segments so as to select segments with sufficient

knowledge. Multiple metrics show that CNSum outperforms

the comparison methods. NeuKE is trained on the constructed

samples with varying knowledge and has a high correlation

with human evaluation.
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