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Abstract—Incorporating user-defined heuristic rules into neu-
ral text inference methods has the potential to align models
with user intentions and domain knowledge, thereby improv-
ing interpretability. In this study, we introduce a novel rule
pattern that includes both domain-specific keywords and the
logical relationships between keywords, which can be defined
by users. We propose an approach to integrate explicit rule-
based reasoning with the semantic modeling capabilities of neural
networks. Specifically, our method employs a parallel framework
wherein a neural classifier is trained on labeled text data for
prediction, while a Semantic-Logic Network (SLN) forms rule
inference as a satisfiability problem. We use a Jensen-Shannon
(JS) loss to ensure consistent predictions on both sides for mutual
regularization. The experiment results show that our approach
outperforms baseline methods. We also did ablation analysis on
our method, it shows that the performance of both the SLN and
the classifier contribute to the final results. Additionally, for the
case that lacks explicit user rules, we propose a boosting method
to automatically generate rules from labeled texts which is
beneficial for text inference and improve the model performance.

Index Terms—User Rules, Semantic-Logic, Text Inference

I. INTRODUCTION

Integrating user-defined rules into neural text inference model

is a highly researched topic, as it offers two key benefits. First,

user rules enhance the model performance by regulating the

learning process. The model learns not only from labeled data

but also from the prior knowledge within the rules [1]. Second,

rule-based inference improves the model interpretability. It

ensures a fully transparent and faithful decision process [2].

This is important for the tasks such as Text Subscription and

Text Review, where users express their preferences on text

subscription by rules and require the explantions for the text

inference results.

Existing methods for integrating user rules treat rule-based

inference as a probability satisfaction problem. Rules are

transformed into real values by the techniques such as soft

logic and fuzzy t-norm [1], [3], where these values represent

the probability of rule satisfaction. Maximizing the probability

of rule satisfaction is also as an additional objective. How-

ever, encoding rules as real values often loses their semantic

meanings, retaining only syntactic information [4]. Another

approach maps rules into the semantic space of text to assist

in text inference [5]. However, these methods require task-

specific rule learning objectives, such as mathematical rule

rewriting [6]. Hence, it is challenging to apply to other tasks.

*Corresponding author

In this paper, we addresse a novel user rule pattern designed

for the tasks such as Text Subscription and Text Review.

The user rules are composed of domain-specific keywords

and logical constraints between these keywords, which are

employed to express user preferences on text subscription. For

example, the upper part of Figure 1 provides a case of user

rules for the Text Subscription task. The user is interested

in emergency news happend in a specific geographical area,

including natural disasters, social security accidents, etc. The

subscribed texts should statisfy any of these topics. Then the

user rules are formalized as keywords-level logical combina-

tion patterns with logical connectives such as conjunction and

disjunction (∧, ∨).

To incorporate this form of user rules into neural text in-

ference, we introduce a Semantic-Logic Network (SLN).

It is designed to identify whether the text complies with

user rules in a neural way. It is sequentially composed of

three detection modules. The first module checks whether

the text contains the keywords specified in the rules, while

the second module checks the conjunction of keywords, and

the third module checks the satisfaction of disjunction rules.

The results from each detection module are combined based

on the logical relationships defined in the rule, yielding the

overall satisfaction detection results on the text. Each detection

module utilizes a neural network, enabling implicit semantic

encoding for simulating explicit symbolic Boolean matching.

It is trainable using text-level labeled data and the base module

(term detection) is pre-trained on generic data to enhance

model robustness.

Additionally, we employ a parallel structure to combine the

proposed SLN with another neural classifier to further enhance

the inference performance. A Jensen-Shannon (JS) loss is

applied to ensure the consistency between the predictions of

the SLN and the classifier. In the absence of user-defined rules,

we introduce a boosting method to generate rules using labeled

data. We use information gain to identify the important key-

words and subsequently explores logical combinations to form

rules. The current rule is evaluated using the Boolean search

accuracy of the labeled data. The experiment results show

the effectiveness of automatically generated rules compared to

manually defined ones. Our main contributions are as follows:

• We introduce a novel user rule pattern that combines

domain-specific keywords and logical combinations.

• We propose a Semantic-Logic Network for integrating
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Fig. 1. User expresses news preference with keyword-level logic rules. The block below illustrates the framework of our approach, integrating the user defined
rules into neural text inference.

user rules into neural text inference. The use of a parallel

structure and JS loss ensures the prediction consistency.

• Experimental results indicate that our model outperforms

baseline methods on multiple tasks. We also provide a

detailed analysis of the impact of rules on the model

performance.

II. RELATED WORK

The most relevant works are the text classification methods,

which directly classify texts of interest and disinterest to users

based on a large amount of labeled data. Examples include

convolutional neural networks (CNNs) [7], [8], recurrent neu-

ral networks (RNNs) with attentions or gates [9]–[11], and

pretrained language model-based methods [12]–[16]. While

these methods perform well provided with sufficient labeled

data, they often lack explainability.

The representative methods for incorporating rules often model

rule inference as the probabilistic logic satisfiability problem.

Techniques such as fuzzy t-norm [1] and probabilistic soft

logic [3] are employed to convert the rules into real val-

ues, representing the probabilities of rule satisfaction. Then,

additional logical constraints are introduced by maximizing

the probabilities of rule satisfaction during model training.

However, these methods often sacrifice semantic meanings

for syntax [4]. Some researchers treat logic rules as trainable

representations [6], [17]. However, these methods require task-

specific rule learning objectives. Hence, it is challenging

to apply to our tasks, where there is a more flexible user

rule pattern that contains domain-specific keywords and their

logical relationships.

Our work is also related to methods that use the consistency

constraints to improve prediction performance on various

tasks. The consistency constraints are typically applied be-

tween two models with the same prediction objective but

different views, such as between extractive and abstractive

summarization models [18], between sentence-level and word-

level category prediction models [19], and between classifiers

based on source text and summary [20]. Prior research has

demonstrated that enforcing consistency constraints during

model training can effectively improve model performances

[21].

III. METHOD

A. Problem Definition and Framework

The user-rule is an expression F that defines logical rela-

tionships between keywords, using logical connectives ∨,∧.

Each term K represents a set of keywords that are either

topic-related or semantically correalated with each other. The

formula F can be converted into an equivalent Disjunctive

Normal Form (DNF). In DNF, a simple conjunctive formula

r consists of terms represented as r =
∧κ

i=1 Ki, where κ is

the number of terms in r. The DNF is obtained by taking

the disjunction of simple conjunctive formulas, denoted as

DNF =
∨τ

j=1 rj , where τ is the number of r. The set of

all simple conjunctive formulas in the user rule is denoted as

R = {r1, r2, ..., rτ}. For simplicity, in the following text, we

refer to a simple conjunctive formula r as a rule.

The task of text inference is to determine whether a given

text x ∈ X satisfies the user rule set R. Due to the nature

of DNF, satisfaction of any r ∈ R is sufficient. The inference

model provides a text-level prediction probability ŷ ∈ (0, 1)
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and a rule-level prediction probability set {ŷr1, ŷr2, ..., ŷrτ}. Each

ŷri ∈ (0, 1) represents the probability that the text x satisfies

the rule ri. The detected rules offer an explanation of the input

text to the user. Our task framework is illustrated in Figure 1,

which includes a parallel structure that combines the proposed

SLN with a neural classifier using a mutual JS loss.

B. Semantic-Logic Network

The SLN is designed to determine whether a text satisfies

the defined semantics by keywords and their combinations in

the given rule. It is composed of three sequentially arranged

detection networks.

1) Term Detection: To determine if the text x contains the

meanings of a keyword k ∈ K in the given rule, we calculate

the relevance between each word in x and each keyword

k ∈ K, by computing the dot product of their pretrained

embedding vectors. The embedding matrices for the text is

denoted as xe and the keywords vector is denoted by K (Sec-

tion IV-A2). The resulting vector a is obtained through matrix

multiplication: a = xe × K. Next, a is concatenated with

the text representation vector x for information integration,

where x is obtain by a lightweight network TextCNN [7].

We employ an MLP network to amalgamate information from

x and K while reducing dimension, resulting in the vector

t = MLP (x⊕ a).

The predicted result ŷt = σ(Wt + b) is evaluated against

the true label yt using the cross-entropy loss function: Lt =
cross entropy(yt, ŷt). The true label yt is obtained through

string matching between the text and keywords.

2) Conjunction Detection: To verify if the text x satisfies the

conjunctive fomular r ∈ R, we leverage the information in

the vector t, which merges the information of the text and the

keywords, to combine the term detection results. We employ

a CNet, which is a three-layer MLP, to capture the fusion

information of x and r. The input to CNet is the concatenated

vector of ti corresponding to each term ti contained in rule r.

The terms in r have conjunctive relationships with each other.

r = CNet|K∗ in r(t1 ⊕ t2 ⊕ ...) (1)

The evaluation is performed by calculating the cross-entropy

loss, denoted as Lr = cross entropy(yr, ŷr), between the

predicted probability ŷr and the true label yr. The true label

yr is obtain through a Boolean check on x using the rule r.

3) DNF Prediction: Similarly, we employ a DNet to deter-

mine whether the text satisfies the final rule in the DNF

form. The DNet takes the concatenated vectors r as input,

allowing the network to capture the interactions between the

rule features. The output of the DNet is then compared to the

ground truth label y of the text x to evaluate the satisfaction of

the DNF. The loss is LR = cross entropy(yR, ŷR), where:

ŷR = DNet|r∗∈R(r1 ⊕ r2 ⊕ ...) (2)

4) Parallel Prediction: To improve the model performance,

we adopt a parallel structure that combines the SLN and

a neural classifier. The text is simultaneously provided as

input into both SLN and the classifier for prediction. To

ensure the consistency of their predictions, we calculate the

Jensen-Shannon (JS) distance between the output predictions

of the classifier (P (x)) and the SLN (Q(x)). The JS dis-

tance, denoted as JS(P ||Q), is a variant of the Kullback-

Leibler (KL) divergence that addresses the asymmetry issue. It

quantifies the difference between two probability distributions.

Specifically, the JS distance is calculated as the average of two

KL divergences:

JS(P ||Q) =
KL(P ||P,Q) +KL(Q||P,Q)

2
(3)

To maintain the consistency, we incorporate the JS distance

as a regularization term in the joint loss for fine-tuning. The

joint loss Lu is defined as follows, where hyperparameters

α ∈ (0, 1) and β ∈ (0, 1) control the tradeoff between the

neural classifier and the SLN:

Lu = αL+ βLR + (1− α− β)JS(P ||Q) (4)

5) Training Process: The term detection module is initially

trained on a general corpus [22]. Subsequently, the conjunction

detection module is added and trained under the given con-

junctive rules. All parameters are updated during this process,

while Lt is suspended.

Subsequently, the disjunction detection module is added for

further training on the text-level labeled data. The previous

losses (Lt and Lr) are suspended, and the SLN, with all

parameters updatable, is trained using the loss function LR.

The classifier is pre-trained on labeled text data. Then the

pre-trained SLN and the pre-trained classifier are combined

for further fine-tuning. Lu is used as the loss for this process.

C. Automatic Generation of Rules

To automatically generate rules in the absence of user-defined

rules, we propose a two-stage process using the labeled text

dataset. In the first stage, we extract the user preferences

from the dataset by identifying important keywords. Unlike

traditional methods that operate at the text level, our approach

uses Information Gain (IG) to identify the important keywords

to distinct positive and negative samples.

Let V = {v1, v2, ..., v|V |} represent the vocabulary corre-

sponding to the sample set X , where |V | denotes the size of

V . The information entropy H(y) quantifies the uncertainty of

the label y: H(y) = −∑
y=0,1 p(y) log p(y). For a given word

v ∈ V , the variable ev ∈ {0, 1} indicates whether the text x
contains the word v. Here, ev = 1 (denoted as ev1) indicates

the presence of a word v in x, while ev = 0 (denoted as

ev0) indicates its absence. The conditional entropy H(y|ev)
quantifies the uncertainty of the label y when the existence of

v is known. The conditional entropy H(y|ev1) is calculated

as: H(y|ev1) = −∑
y=0,1 p(y|ev1) log p(y|ev1). Similarly, we

have H(y|ev0). The overall conditional entropy H(y|ev) and

the information gain of a word v is as follows:

H(y|ev) = −
∑

ev=0,1

p(ev)H(y|ev) (5)
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TABLE I
EXAMPLES OF THE emergency DATASET.

Content Label
Typhoon lichema landed in (exact region). The

meteorological observatory continues to issue a Red
Rainstorm warning.

1

(exact region) was ravaged by lichema. After the
typhoon, seafood was picked up casually, and a

group of fish ”bouncing”.
0

Affected by Typhoon lichima, it has rained for
many days in (exact region), and now it has ushered

in a small sunny day.
0

IG(y, ev) = H(y)−H(y|ev) (6)

In the second stage, we search for the combinations of the

high-information-gain keywords to form the conjunctive rules.

The current rule is evaluated by the Boolean search accuracy

on the labeled data. An evaluation score s is defined to quantify

the suitability of the current rule:

s =

∑
i I(y

l
i = yi)

|X| (7)

where yli is the Boolean matching results on text xi using

the current rule. We select the top-scoring conjunctive rules

to construct the DNF. By eliminating unnecessary keywords,

our method optimizes the search space. The complexity for

keyword extraction is O(|X| · |V |) and for conjunctive rule

generation is O(|X|).
IV. EXPERIMENTS

A. Text Subscription

1) Dataset: The emergency dataset focuses on the emer-

gencies news occurring in a certain region, covering top-

ics such as natural disasters, societal governance,

production safety incidents and etc. The dataset comprises

80,000 samples, with an equal distribution of positive and

negative samples. The text samples are padded to a maximum

length of 400 tokens.

In Table I, both positive and negative samples contain key-

words like typhoon, rainstorm, and the specific region.

However, positive samples provide the essential semantic in

the context characterizing emergencies, while negative samples

not. Therefore, it is necessary to consider both keywords and

context semantics in handling the above task. For the rules

in the emergency dataset, Figure 1 provides a breif version

of example that does not include some subdomains such as

Meteorological Disasters.

2) Model Implementation: For the SLN model, the term and

the rule embedding dimensions are set to 200. We use the

Adam optimizer with a dropout ratio of 0.5 at each fully

connected layer. The JS ratio is set to 0.2, while α = β = 0.4.

The vector K is the average of all keywords in the set K. This

captures the shared semantic features among synonyms, which

are often closely related in the semantic space. Although there

should be a logical ∨ relationship among keywords within a

TABLE II
MODEL COMPARISON RESULTS ON emergency AND SAR.

Model
emergency SAR

prec. rec. F1 prec. rec. F1
Boolean Search 77.0 74.5 75.7 81.6 76.6 79.0

TextCNN 94.0 93.6 93.8 92.7 96.7 94.7
BiLSTM 95.5 91.9 93.7 92.9 96.6 94.7

BiLSTM-2DCNN 95.2 93.7 94.4 94.3 96.6 94.7
HAN 95.7 93.6 94.6 - - -

LSTM-Capsual 95.7 93.2 94.4 94.3 96.7 95.4
BERT 96.8 94.5 95.6 95.6 96.7 96.1

RoBERTa 96.4 94.7 95.5 95.7 96.9 95.8
SLN 94.6 94.2 94.4 92.6 97.6 95.0

SLN+BERT 98.4 98.4 98.4 97.2 97.9 97.5

set, expanding the rules in this way would result in exponential

complexity, which is related to the size of the set.

Additionally, for geographical keyword sets that include place

names, to mitigate embedding issues arising from diverse

geographic names, we replace all subordinate geographic

names with their superior counterparts. For instance, if a user

is interested in events occurring in the New Y ork region,

then Brooklyn would also satisfy the condition. Therefore,

all subordinate regions under New Y ork are replaced with

New Y ork.

3) Comparision Methods: We compare our approach with the

traditional Boolean Search baseline, which performs a hard

matching of the text and the given rule. We also adopt some

advanced text classification baselines, each utilizing different

structures for text embedding. The TextCNN [7] approach

employs convolutional kernels of various heights to extract

features from the text. BiLSTM integrates two layers of LSTM

[9] in opposite directions to capture sequential information.

BiLSTM-2DCNN [23] utilizes two-dimensional convolution

and pooling operations to derive a text representation. HAN
[10] combines word-level and sentence-level BiLSTM to cap-

ture hierarchical information. LSTM-CAPSUAL [24] encodes

the input text using an LSTM layer and employs capsule net-

works for classification. For the Pre-trained Language Models

based methods, we compared with BERT [14] and RoBERTa
[15] models, which are fine-tuned on the emergency dataset.

4) Results and Analysis: Table II shows the inference results

on the emergency dataset. All the results are the average of

10-fold experiments. The upper block includes the results of

baselines trained solely on emergency, while the lower block

comprises the results of our parallel models that combine

BERT [14] with SLN.

The results of the proposed parallel model demonstrate a

notable improvement of 4% in accuracy and 4.2% in recall

compared to the individually trained SLN. The incorporation

of the JS distance in the joint loss improves the consistency of

the predictions between the classifier and the SLN. Moreover,

the SLN enables more precise handling of user concerns by

separately detecting conjunctive rules. For the hyperparam-

eters, we observed that changing the rule embedding sizes

within the range of 150-250 had trival impacts on performance.
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TABLE III
RESULTS (%) OF ABLATION TESTS ON THE SLN MODULES.

Model
SLN Parallel

acc. F1 acc. F1
+min+maxw\o 75.9 69.2 93.1 82.4

+CNet+maxw\o 76.1 74.9 94.9 94.8

+CNet+DNetw\o - - 96.3 96.2

+min+maxw\ 94.1 94.0 95.6 95.8

+CNet+maxw\ 94.4 94.4 98.1 98.1

+CNet+DNetw\ 94.4 94.4 98.4 98.4

However, the JS setting had a more substantial influence. The

accuracy varied by up to 2% within the JS range of 0.2-0.8.

5) Ablation Study: In the ablation study, we evaluate the

parts of SLN, particularly focusing on CNet and DNet. We

also evaluate the effect of fine-tuning SLN based on the text-

level supervision. Specifically, we compare the performance

of CNet and DNet implemented with MLP versus min/max
functions. The min function outputs the minimum detection

probability of all terms belonging to the conjunctive formula,

while the max function outputs the maximum detection proba-

bility of all conjunctive formulas within the DNF. Additionally,

we compare the performance of the SLN fine-tuned under the

labeled text (w/) with the SLN without fine-tuning (w/o),

where the latter directly outputs the disjunction detection

results ŷR as the inference result.

Table III shows the results of the ablation study. The +min
model refers to replace the CNet with the min function,

while the +max model is to replace the DNet with the

max function. The +min + max model only adjusts the

parameters in the term detection module during training. From

the results, we can see that the +CNet + DNet model

achieves the highest average accuracy and F1 score with stable

performances. However, the +min + max model offers a

more concise structure and comparable results, making it an

attractive alternative considering the training cost.

6) Analysis of The Parallel Structure: We conducted an anal-

ysis of the impact of parallel training on SLN and the neural

classifier (TextCNN [7] in this case). We provide statistics on

the number of samples predicted by the model in different

probability intervals in Figure 2. We employ False Prediction

Masking (FPM), where the red box signifies the number after

removing False Negatives, and the green box represents the

number after removing False Positives, as shown in Figure

2(b), (c), and (d).

Comparing Figure 2(a) with (b), there is a notable improve-

ment in recall after joint training. From Figure 2(a) to (c), the

SLN exhibits higher confidence in assigning low probabilities

(0-0.25) due to its logical inference certainty. From Figure 2(a)

to (d), TextCNN demonstrates high confidence in assigning

high probabilities (0.75-1) because of its ability to capture

semantic information. After joint training, TextCNN assigns

higher probabilities to positive samples (0.5-0.75) to (0.75-1),

indicating increased confidence in True Positive predictions.

The SLN assigns lower probabilities to negative samples (0.25-

TABLE IV
THE EXPERT RULES OF THE SAR TASK.

K# Content K# Content
K1 {has no right etc.} K6 {handle, etc.}
K2 {shareholder, etc.} K7 {without consent, etc.}
K3 {actual investor.} K8 {loss, deficit., etc.}
K4 {equity, etc.} K9 {compensate, etc.}
K5 {pledge, etc.}
rε1 K1 ∧ ((K2 ∧K3) ∨K7) ∧K5 ∧K8 ∧K9

rε2 K1 ∧ ((K2 ∧K3) ∨K7) ∧K4 ∧K5 ∧K8 ∧K9

rε3 K1 ∧ (K2 ∨K3 ∨K7) ∧ (K5 ∨K6)

TABLE V
INFERENCE RESULTS (%) WITH DIFFERENT RULES.

Rules
Parallel Predictions

prec. rec. F1 acc.
rε1 95.0 97.3 96.1 96.1
rε2 95.6 96.7 94.9 96.1
rε3 95.7 98.2 96.9 96.9
rι1 90.6 95.1 92.8 92.6
rι2 92.5 92.9 92.6 92.6
rμ 94.5 96.2 95.3 95.3
rν 95.6 97.9 96.7 96.7

0.5) to (0-0.25), demonstrating higher confidence in True

Negative predictions.

B. Text Review Task

We evaluate our proposed method on another task called

Subjective Answer Grading (SAG). This task is to determine

whether a student answer text, in response to a subjective

question, meets a specific scoring criteria. The scoring criteria

are formalized as rules defined by the graders, containing

keywords and their logical relationships, which describe the

knowledge points required for subjective questions.

1) Dataset and Rules: For this task, an English version of the

dataset subset is publicly available1. In Table IV, we present

three rules provided by the different graders.

2) Results and Analysis: The results are presented in Table

II, where rε3 is used as the user-defined rules. Our method

outperforms BERT in this task, demonstrating the effectiveness

of our approach in evaluating both logical matching and

semantic relevance between student answers and the scoring

criteria.

To evaluate the effectiveness of our rule generation method, we

applied rules generated by various methods to both the SLN

and parallel inference and compared their performance. The

rules for comparison include expert-provided rules (rε∗), rules

generated by randomly extracting and combining keywords

(rι1,2), rules generated using Boolean search indicators (rμ),

and rules generated by our method (rν). Table V shows the

comparison results. From the results, it is evident that rules

generated by our method closely approach the performance of

expert-provided rules in terms of model performance.

1http://splab.sdu.edu.cn/xscg/sjjydm.htm
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(a) The Prediction consisitency. (b) The Prediction consisitency with False Prediction masked.

(c) The Prediction consisitency with False Prediction masked on SLN. (d) The Prediction consisitency with False Prediction masked on TextCNN.

Fig. 2. Statistical analysis of the prediction consistency. In each subfigure, the left image represents the independently trained models, while the right image
represents the jointly trained models.

V. CONCLUSION

Our approach integrates user-defined rules with neural text

inference to enhance the model performance and interpretabil-

ity. We employ a parallel framework that includes a neural

classifier and the proposed Semantic-Logic Network to address

the problem of combining explicit rule-based reasoning with

implicit semantic inference. We introduce a JS loss on the par-

allel training to ensure the consistent predictions, which is the

mutual regularization of the models. In the absence of explicit

rules, we employ a boosting strategy to generate valuable rules

from labeled texts. Experimental results demonstrate that our

approach outperforms the baseline methods on tasks such as

Text Review and Text Subscription. And the generated rules

helpful on improving the model performance.
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