
Information Sciences 179 (2009) 2629–2642
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Specification and enforcement of flexible security policy
for active cooperation q

Yuqing Sun a,*, Bin Gong a, Xiangxu Meng a, Zongkai Lin c, Elisa Bertino b

a School of Computer Science and Technology, Shandong University, No. 27 Shanda South Road, Jinan Shandong 250100, China
b CERIAS and Department of Computer Science, Purdue University, USA
c Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 August 2007
Received in revised form 29 May 2008

Keywords:
Security policy
Access control
Flexibility
Cooperation
RBAC
0020-0255/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.ins.2009.01.040

q Research supported in part by the National High
NSF Grant 0712846 ‘‘IPS: Security Services for Health
CERIAS.

* Corresponding author. Address: School of Compu
China.

E-mail addresses: sun_yuqing@sdu.edu.cn (Y. Sun
Bertino).
Interoperation and services sharing among different systems are becoming new paradigms
for enterprise collaboration. To keep ahead in strong competition environments, an enter-
prise should provide flexible and comprehensive services to partners and support active
collaborations with partners and customers. Achieving such goals requires enterprises to
specify and enforce flexible security policies for their information systems. Although the
area of access control has been widely investigated, current approaches still do not support
flexible security policies able to account for different weighs that typically characterize the
various attributes of the requesting parties and transactions and reflect the access control
criteria that are relevant for the enterprise. In this paper we propose a novel approach that
addresses such flexibility requirements while at the same time reducing the complexity of
security management. To support flexible policy specification, we define the notion of
restraint rules for authorization management processes and introduce the concept of
impact weight for the conditions in these restraint rules. We also introduce a new data
structure for the encoding of the condition tree as well as the corresponding algorithm
for efficiently evaluating conditions. Furthermore, we present a system architecture that
implements above approach and supports interoperation among heterogeneous platforms.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction and motivation

Today enterprises heavily rely on information systems and applications. As a result many tasks that in the past were car-
ried by humans are today automatically executed by computer systems. As a consequence sharing, interoperating and com-
bining services across multiple enterprises are today easier. To keep ahead in strong competition environments, enterprises
should provide flexible and comprehensive services to partners and support active collaborations with partners and custom-
ers. Achieving such goals requires the development of novel access control models and mechanisms able to address the fol-
lowing requirements.

Flexible specification of access control policies: Consider a scenario of supply chain management, and suppose that an enter-
prise would grant different access rights to sensitive information to partners according to their qualifications, relationships
. All rights reserved.

Technology Research and Development Program (863 Program) of China (2006AA01A113), by the US
care Applications”, by the NSF grant of Shandong Province of China (Y2008G28), and by the sponsor of

ter Science and Technology, Shandong University, No. 27 Shanda South Road, Jinan Shandong 250100,

), gb@sdu.edu.cn (B. Gong), mxx@sdu.edu.cn (X. Meng), lzk@ict.ac.cn (Z. Lin), bertino@cs.purdue.edu (E.

mailto:sun_yuqing@sdu.edu.cn
mailto:gb@sdu.edu.cn
mailto:mxx@sdu.edu.cn
mailto:lzk@ict.ac.cn
mailto:bertino@cs.purdue.edu
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

2630 Y. Sun et al. / Information Sciences 179 (2009) 2629–2642
or transaction contents. For example, a medical instrument manufacturer would like to grant the permission for accessing
detailed information from its latest database to a VIP partner, while would like to grant a browsing permission to summary
information to a generic partner. Such flexible access control policies require to perform access control by taking into ac-
count a comprehensive set of information about the requesting partner. In such process, each information item may have
a different importance. For example, the enterprise may consider more relevant the certification granted by a trusted na-
tional organization compared with history transaction. Thus a greater weight should be assigned to certification while a
smaller weight should be assigned to history transaction. Policies are also characterized by a temporal dimension and there-
fore historical data should also be taken into account in access control. We would like to associate different weights with
data from different temporal periods in order to reflect temporal criteria, such as that more recent data have greater weights.

Flexible enforcement of access control policies: It is increasingly important to take into account environment factors when
enforcing access control policies. To address such requirement an access control mechanism should dynamically monitor
state changes of the underlying system and take into account such changes in the policy enforcement process [1,14]. For
example, qualifications of a user might be changed by the transactions carried out by the underlying systems; for example
the relationship partner could be upgraded to VIP partner on the assumption that the trade amount exceeds 100 million dol-
lar within one year.

Flexible adaptation of access control policies: To effectively support collaborations, access control policies need to evolve
along with the business developments and changes in the enterprise mission. For example, an enterprise may decide to open
more sensitive information to partners than in the past, and thus adjust the qualification threshold of VIP partner to a lower
level 75 million dollar of trade amount.

The above flexibility requirements about access control systems arise not only from industry but also in the military and
government domains. Therefore, they are important requirements for the development of access control models and mech-
anisms to be used in collaborative applications.

Although widely used access control models, like DAC (Discretionary Access Control), MAC (Mandatory Access Control)
and RBAC (Role Based Access Control) [7], are appropriate for conventional database and application environments, they
do not meet the above requirements. In most cases, they are based on predefined regulations; if changes are required,
the access control policies must be manually adjusted which is time consuming and error-prone. When a system supports
a large amount of users, characterized by a large diversity of factors, upgrading the access control policies quickly becomes
an impossible task.

Recently, extensions to conventional access control models have been proposed to support advanced applications. Exam-
ples of such extensions include content-aware access control, user qualification based authorization management, and attri-
bute based access control (ABAC) [2,6,22]. Despite their advantages, they are still not able to support more active security
policies, in particular because they do not take into account data transactions. Rule-based access control, like rule-based
user-role assignment, is also considered an effective method to support flexible enforcement of access control policies. How-
ever, it does not take into account the important requirement that different weights may have to be assigned to the various
attributes, characterizing the parties requesting access, nor the fact that authorizations may have to change as consequence
of transactions executed by these parties.

In this paper we propose a novel approach that addresses the above flexibility requirements, while at the same time
reducing the complexity of security management. Our approach focuses on the specification and enforcement of flexible ac-
cess control policies, by taking into account the underlying transactions, user attributes, and application context when mak-
ing access control decisions. Our approach is based on the notion of restraint rules which are associated with authorization
management processes. We also introduce the concept of impact weight; this weight is associated with the condition of each
restraint rule. To efficiently enforce such rules, we introduce a new data structure, referred to as condition tree, as well as
corresponding algorithms to evaluate rule conditions. Furthermore, we also present a system architecture that implements
the proposed approach and is able to support interoperation among heterogeneous platforms.

The remainder of this paper is organized as follows. Next section discusses related work. The proposed model is intro-
duced in Section 3. Section 4 discusses the calculation of restraint rules. The subsequent sections present a comprehensive
example to illustrate our approach and an overview of the system architecture, respectively. The final section outlines con-
clusions and future work.
2. Related work

RBAC is a widely adopted access control model to secure resources in an information system [17]. In RBAC, permissions
are associated with roles, and users acquire permissions by being assigned roles. Roles within an organization typically have
overlapping sets of permissions and thus they can be organized according to role hierarchies. Constraints are used to reflect
security policies of an organization, like Separation of Duty (SoD) that formulates multi-person control policies to discourage
frauds. Although RBAC provides a powerful mechanism to secure large systems, manual adjustment of authorizations has to
be carried out to reflect policy changes by the enterprise.

Recently, approaches have been proposed to support automatic authorization management [9]. AI-Kahtani et al. propose
a family of models, called RB-RBAC, to support automatic user-role assignments based on user attributes and a set of autho-
rization rules [3,4]. The central features of RBAC such as roles, role hierarchies, and constraints can be specified based on user

Y. Sun et al. / Information Sciences 179 (2009) 2629–2642 2631
attributes. Although their work provides a theoretical foundation for the implementation of automatic authorization
assignment, complex constraints, such as user attributes with different weights, cannot be supported. Also their approach
does not take into account the underlying transactions.

Another influential work is the Open Architecture for Secure Inter-working Services (OASIS), proposed by Bacon et al.,
which allows self-managed domains to specify their own access control policies and interoperate using service level agree-
ment [5]. It is a rule-based approach in which a role is activated only when the rules and constraints associated with the role
are satisfied. Examples of such constraints include the activation of prerequisite roles or conditions on time and location.
Each environment constraint is considered as an atomic proposition. Constraints are tested at the time of activation and trig-
gered along with the activation. Once a constraint becomes false, the role is deactivated at once. Although OASIS is expres-
sive, it does not consider transactions that are the basis of active authorizations, and many other practical requirements.

Our work is also related to content-dependent access control models. One such model has been developed by Bertino
et al. [6] in the context of object-oriented databases. Another model has been proposed by Adam et al. [2] in the context
of digital libraries; this model supports the specification of flexible authorizations based on the qualifications of users and
protected resources. The main difference is that our approach supports dynamic changes to authorizations by taking into
account the underlying transactions and the different weights that the various user attributes may have with respect to ac-
cess control decisions.

Our work is also related to attribute based access control (ABAC), which has recently been proven to be successful in ac-
cess control for distributed systems [16,19,22]. ABAC manages attribute-to-permission mappings and uses attributes to
avoid the need of setting up and managing roles for RBAC. Despite the fact that ABAC simplifies the assignment and revo-
cation of permissions, it does not support the association of different weights with attributes and does not take into account
transactions.

There are other related approaches. Herzberg et al. propose the Trust Establishment system which supports the automatic
mappings of unknown subjects to predefined business roles by using logical rules and certificates issued by third parties.
Each role has one or more rules defining how a subject can be assigned to it [11]. However such approach does not consider
the relationships among different rules. In the approach by Zhong et al. [23], users on the Web can be automatically assigned
roles by assignment policies according to a trustworthiness threshold specified by a system administrator. However user
trustworthiness is computed based on the user performance and therefore the overall security of the system is low. Kern
et al. propose the Enterprise RBAC (ERBAC) model, which is implemented as a Security Administration Management
(SAM) in Jupiter [12,13]. SAM Jupiter relies on an automatic process for assigning users to roles. However no formal model
is given for this process. The problem of access control for collaborative applications has also been discussed in other papers
[8,10,15,18,20]; however all the approaches proposed in these papers are very limited in that do not address the problem of
assigning different weights to attributes and other factors used in access control decisions and do not take transactions into
account.

3. Active authorization management model

This section first presents an overview of the proposed model and then describes in details the various components of the
model.

3.1. Overview of the proposed model

Since RBAC is supported by a large number of products and widely adopted in various applications, our model has been
defined by extending RBAC with constructs supporting flexible authorization management. Permissions in our model as in
RBAC are generally stable and assigned to roles with hierarchies. Users are assigned to different roles so as to acquire the
corresponding permissions. Flexible access control policies in our model are supported through the use of restraint rules;
these rules are categorized into three classes according to the typical steps followed in authorization processes: authoriza-
tion rules, assignment rules and activation rules, which are respectively enforced on user-role assignments, permission role
assignments and activation of permissions. Fig. 1 presents a graphical representation of our model and shows for each RBAC
relationship the relevant class of restraint rules.
Fig. 1. The active authorization management model.

2632 Y. Sun et al. / Information Sciences 179 (2009) 2629–2642
In the following, we first describe the basic components of our model and the relations among them. We then formally
define the conditions and rules. Throughout the discussion, U, R and P denote the sets of users, roles and permissions,
respectively.

Users: Users generally are human beings who are assigned responsibilities to perform certain job functions in cooperative
business process.

Permissions: Permissions are the approvals for users to access sensitive resources.
Roles: A role is a job function with some associated semantics regarding authority and responsibility. Roles are organized

according to role hierarchies based on the inheritance relation, denoted as P. The inheritance relation between roles r1 and
r2, namely r1 P r2, specifies that r1 inherits all the permissions assigned to r2 and that all users of r1 are also users of r2.

Session: A session is a limited lasting connection between a subject and the protected system, which is generally activated
by the subject. A subject would be mapped to some possible roles in the session and is permitted to open multiple sessions at
the same time.

Authorization rule: An authorization rule models a regulation concerning user assignments to roles. It takes into account
the underlying transaction and application context. It specifies the qualifications that a user must possess for acquiring a role.

Activation rule: An activation rule specifies some prerequisite conditions for the use of a role in a session; such conditions
can be based on time and location.

Assignment rule: An assignment rule regulates the assignment of permissions to roles, which is crucial for supporting tem-
porary assignment.

A restraint rule consists of prerequisite conditions and a consequence. Each condition is in form of one or more weighted
atomic conditions combined through logic operation connectors. We now present the detailed definitions of such rules by
first introducing the notion of atomic condition and then the notion of compound condition. Based on such notions, we then
introduce the formal definition of restraint rule.

3.2. Atomic conditions

An atomic condition is a relational expression that specifies a single security or business requirement. Each atomic con-
dition typically contains an attribute and associated value connected by a relational operator. An attribute is a variable of a
specific data type, which includes a set of possible values (domain) and operators on them. Attributes in our model are clas-
sified into three categories: object attributes, system attributes, and security logic attributes. Object attributes describe user
information and business transaction data, like items in database. System attributes define system context, like date, time or
IP address. Security logic attributes represent security-relevant information, like SOD.

Definition 1 (Attribute Set, abbr. ATTR). An element of attribute set ATTR is defined as follows:

1. any item defined in business transaction database,
2. any system attribute like date, time or IP address, which is respectively denoted as sys.date, sys.time and sys.IP in our

model,
3. any name of user, role or permission that is defined by security administrator.
Definition 2 (Relation operator). A relation operator is an element of the set RL_OP = {6, <, =, P, >}, which denote equal or
smaller, smaller, equal, equal or larger, larger relations, respectively.

Definition 3 (Atomic condition). An atomic condition atc is in form of (attr op attr_value), where op 2 RL_OP, attr 2 ATTR and
attr_value is an element of the domain of attr.

Let AT_SET denote the set of all atomic conditions that can be defined in a system. The following example shows several
atomic conditions that can be used in a restraint rule for preventing a user from arbitrarily modifying his submitted proposal
on the assumption that he is already assigned role partner in a bid system.

Example 1. Atomic conditions:
(sys.time < deadline)
(u.app_bid = bid.serialno)
(role! = third_party)
In this example, the first atomic condition means that any modification of proposal is limited before a given time deadline.
The second requires that the provided serial number of proposal should be same of the submitted proposal, while the third
specifies that the role the user is taking on should not be the third-party role.
3.3. Compound conditions

More generally, several conditions need to be verified for access control. Therefore we introduce the concept of compound
condition in our model. In what follows, we first give its overall definition of compound condition and then describe each
element in detail.

Y. Sun et al. / Information Sciences 179 (2009) 2629–2642 2633
Definition 4 (Compound condition, abbr. cpc). The set CP_SET of compound conditions is defined as follows:

– An atomic condition is an element of CP_SET.
– If cpc1 and cpc2 are elements of CP_SET, then cpc1 ^ cpc2, cpc1 _ cpc2 or :cpc1 are elements of CP_SET, where ^, _, : are the

logic operators and, or, and not, which satisfy the commutative, associative and distributive laws.
– A weighted condition is an element of CP_SET.
– A historical condition is an element of CP_SET.

A weighted condition in the above definition is used for the case that we would take into account a comprehensive set of
information with different importance. For example, certification granted by a trusted third-party is more relevant than bid
price. So, in our model we associate conditions in a weighted condition with different weights.

Definition 5 (Weighted condition). A weighted condition is defined by the tuple (ex-list, A, threshold), where:

– ex-list = [E1, E2, . . . , and Em] is a list of compound conditions,
– A is a vector (a1, a2, . . . ,am), where each ai is an impact weight associated with Ei, 0 < ai 6 1,

Pm
i¼1ai ¼ 1,

– threshold is the threshold for this condition to hold with 0 < threshold 6 1.

The semantic of a weighted condition is that the condition holds only if the following inequality is valid:
Xm

i¼1

ai � Ei P threshold ð1Þ
Example 2. The following are compound conditions:

CP_SET = {at1, at2, at3, cp1}
at1 = (T.amount > 10,000)
at2 = (T.sale > 5,500,000)
at3 = (user.certification = ISO9000)
cp1 = ((at1, at2, at3), (0.3, 0.3, 0.4), 0.6)
Example 2 gives three atomic conditions at1, at2, and at3 and a compound condition cp1. The semantics of at1 is that the
trade amount should be larger than 10,000 pieces, while at2 means that the trade money should be larger than 5.5 million
dollar and at3 means that a user should hold the certification ISO9000. In cp1, different weights (0.3, 0.3, 0.4) are associated
with the corresponding conditions (at1, at2, at3) respectively. The threshold is set to 0.6. Therefore, we can argue that cp1

holds only when the following inequality is valid.
ðat1 � 0:3þ at2 � 0:3þ at3 � 0:4ÞP 0:6
We observe that if any two of the three atomic conditions in cp1 are TRUE, cp1 is TRUE.
Furthermore, in many cases we should take into account history transactions. For example, although a partner had a good

reputation during the past ten years and satisfied the qualification for taking on the role of senior partner, it still cannot be
assigned the role VIP if it has made no progress in recent years. To model such type of condition, we adopt the TRACE mech-
anism that keeps track of the dynamic relationship of a subject over time. The total considered history can be divided into
several periods and each period is called an interval. We can assign different influence weights to intervals according to their
impacts to the total result. The TRACE mechanism periodically updates data so as to reflect fresh progress, such as past five
years from now means from year 2004 until 2008 while for next year it would be from 2005 until 2009. We now introduce the
concept historical condition to express the weighted history based authorization.

Definition 6 (Historical condition). A historical condition is defined by the tuple (Ex_Mtrx, A, B, threshold), where

– Ex_Mtrx is a vector (E1, E2, . . . ,Ek) and each Ei is a condition vector (Ei1, Ei2, . . . ,Eim), Ei 2 CP_SET,
– A is a vector (a1, a2, . . . ,am), with 0 < aj 6 1,

Pm
i¼1aj ¼ 1, aj is associated with each element Eij in each row Ei and denotes the

impact weight of each condition Eij in Ei,
– B is a vector of interval weights (b1, b2, . . . ,bk) with 0 < bi 6 1,

Pk
i¼1bi ¼ 1, bi is associated with each row Ei and denotes the

impact factor of condition Ei in Ex_Mtrx, and
– threshold 2 [0, 1] is the threshold for this condition to hold.

The semantics of a historical condition is that the condition holds only when the inequality (2) is verified. Each con-
dition Eij in the determinant of (2) is easy to evaluate since it is either TRUE or FALSE, respectively denoted as 1 or 0. The
threshold is set according to the security requirements and business mission of the enterprise, and could be dynamically
adjusted.

2634 Y. Sun et al. / Information Sciences 179 (2009) 2629–2642
E11; E12; . . . ; E1m

E21; E22; . . . ; E2m

. . .

Ek1; Ek2; . . . ; Ekm

0
BBBB@

1
CCCCA

a1

a2

. . .

am

0
BBBB@

1
CCCCA
ðb1; b2; . . . ;bkÞ P threshold ð2Þ
3.4. Restraint rules

As we have already discussed, access control policies are expressed as restriction rules and enforced on three major steps
of authorization process: user-role assignment, permission role assignment, and permission activation. We thus define five
categories of rules on these aspects that are: permission assignment rules, user authorization rules, role update rules, acti-
vation rules, and repeal rules.

Definition 7 (Rule type, abbr. Rtype). A rule type is an element of set RTYPE = {Pasgn, Uauth, Rupdt, Pactv, Repeal}, where
Pasgn, Uauth, Rupdt, Pactv and Repeal denote the restraint type of permission assignment rule, user authorization rule, role
update rule, permission activation rule, and repeal rule, respectively.

Definition 8 (Restraint rule). A restraint rule has the form Rtype:: rule_name = A ? B, where Rtype 2 RTYPE is a rule type, and
rule_name is the name given to the rule by the security administrator. A is called the prerequisite and B is called the
consequence.

Definition 9 (Permission assignment rule, abbr. Pasgn). A permission assignment rule Pasgn specifies the prerequisite condi-
tion of a permission role assignment and has the form
Pasgn :: rule name ¼ ðpi; cpcÞ ! ðrjÞ
where pi 2 P, rj 2 R, and cpc 2 CP_SET.
Its semantics is that permission pi can be assigned to role rj only when condition cpc is satisfied. Or we say that condition

cpc if true results in the assignment of pi to rj.

Definition 10 (User authorization rule, abbr. Uauth). A user authorization rule Uauth controls the assignment of a role to a
user. It has the form
Uauth :: rule name ¼ ðri; cpcÞ ! ðujÞ
where ri 2 R, uj 2 U, and cpc 2 CP_SET.
This rule means that role ri can be assigned to user uj only when condition cpc is satisfied. Or we say that condition cpc

yields role ri to uj.

Definition 11 (Role update rule, abbr. Rupdt). A role update rule Rupdt specifies the prerequisite for a user to take on a senior
role rj on the assumption that he has been assigned role ri. It has the form:
Rupdt :: rule name ¼ ðri; cpcÞ ! ðrjÞ
where ri, rj 2 R, and cpc 2 CP_SET.
We say that any user who has already been assigned role ri is permitted to take on a senior role rj on the condition of cpc

being true.

Definition 12 (Permission activation rule, abbr. Pactv). A permission activation rule Pactv specifies the prerequisite for a per-
mission to be active and has the form:
Pactv :: rule name ¼ ðcpcÞ ! ðpiÞ
where pi 2 P, and cpc 2 CP_SET. We say that permission pi can be activated or take effect only when condition cpc is satisfied.
Or we say that condition cpc yields pi effective.

Definition 13 (Repeal rule, abbr. Repeal). A repeal rule Repeal has the form:
Repeal :: rule nameðcpcÞ
where cpc 2 CP_SET.
This means when condition cpc is satisfied, the rule identified by rule_name is repealed. Or we say that condition cpc

results in rule rule_name to become ineffective. This rule is useful for active authorization to support the repeal of a restraint
rule.

Fig. 2 reports the syntax of restraint rule language.

Fig. 2. The syntax of restraint rule specification language.

Y. Sun et al. / Information Sciences 179 (2009) 2629–2642 2635
4. Calculation of restraint rules

Since security policies are expressed in terms of restraint rules, access control relies on the evaluation of the conditions in
restraint rules. In this section, we focus on how to efficiently evaluate conditions. We first explore a new data structure, re-
ferred to as condition tree, to encode conditions. Then we discuss how to efficiently evaluate the conditions with the help of
key nodes and strong nodes on condition tree. Finally, we give the details of determination process and corresponding
algorithm.

4.1. Condition tree

Generally, there are three issues when dealing with an access control model like ours: how to represent complex policy in
a unified form so that they can be easily analyzed; how to identify all required information for access control; how to ensure
that policies are consistent. In order to address such issues, we propose the condition tree data structure for representing each
condition in each restraint rule.

A condition tree is a connected, acyclic graph. It has a unique root node. Each node is either a leaf or an internal node.
An internal node has one or more child nodes and is called the parent of its child nodes. All children of the same parent
node are siblings. Compared with general tree structure, a condition tree has two distinguishing characteristics: (1) each
branch is associated with a weight value that denotes the impact factor of a child node to its parent; (2) each node is
associated with different semantics according to its functionality. Leaf nodes are called atomic nodes and denote atomic
conditions. Internal nodes are called threshold nodes, and each of them is associated with a value denoting the threshold
for the condition in the subtree to hold. Here we give the formal definition of the notion of condition tree and depict it
in Fig. 3.

Definition 14 (Condition tree). A condition tree is defined as the the tuple (V, E, root), where V is the set of nodes, E is the set
of edges, root 2 V is a special node that has no incoming edges. A condition tree satisfies the following conditions:

– It has a unique root.
– All nodes, except the root node can be divided into several sets; each set is iteratively organized as a sub tree and does not

intersect with each other.
– All nodes are classified into two categories: atomic node and threshold node. An atomic node denotes an atomic condition

that can be evaluated immediately according to the underlying transaction data or system context. A threshold node gives
the threshold of a sub tree to be satisfied.

– Each edge ej = (vi, vj, weightj) is associated with a value weightj 2 (0, 1], which denotes the weight of child node vj.

Fig. 3. Condition tree. Grey node: atom condition; white node: threshold; deep grey node: root.

2636 Y. Sun et al. / Information Sciences 179 (2009) 2629–2642
The semantics of a condition tree is as follows: for any edge (vi, vj, weightj), if the child node vj is TRUE then it contributes
weightj to its parent vi. For any parent node vi, if the total contribution from its children exceeds the thresholdi in vi, vi is eval-
uated to TRUE.

Now we describe how to express various forms of conditions defined in Section 3 by the condition tree. An atomic con-
dition is directly expressed as a leaf node while a compound condition must be translated into a sub tree with a threshold
node, a set of atomic nodes and corresponding weighted branches. The translation rules are given below. Rule 1 and rule 2
are for logic conditions while rule 3 is for weighted conditions and historical conditions.

RULE 1 (TR_Intersection). Let at1, at2, . . . , and atm be conditions. Suppose that they are expressed by condition trees T1, T2, . . . ,
and Tm, where Ti = (Vi, Ei, Rooti). The condition tree resulting from their logic intersection, namely at1 ^ at2 ^ � � � ^ atm, is the
tree IntsT = (V, E, Root), where V = V1 [V2 [� � � [Vm [{Root}, E = E1 [E2 [� � � [Em [{(Root, Rooti)j i = 1, 2, . . . ,m}, the threshold
for Root is 1, and the weight of each branch (Root, Rooti) is 1/m. We show the intersection tree in Fig. 4(1).

RULE 2 (TR_Union). Let at1, at2, . . . , and atm be conditions. Suppose that they are expressed as condition trees T1, T2, . . . , and
Tm, where Ti = (Vi, Ei, Rooti). The condition tree resulting from their logic union combination, namely at1 _ at2 _ � � � _ atm, is
the tree UnionT = (V, E, Root), where V = V1 [V2 [� � � [Vm [{Root}, E = E1 [E2 [� � � [Em [{(Root,Rooti)j i = 1, 2, . . . ,m}, the
threshold of Root is 1/m, and the weight of each branch (Root, Rooti) is 1/m. We show the union tree in Fig. 4(2).

Notice that the selection of the branch weight and root threshold could be different. The only requirement for logic inter-
section operation is that the threshold of the root is equal to the sum of all children branches weights since logic intersection
operation means the final TRUE only on condition of all sub conditions TRUE. Similarly, for union operation, the requirement
is that the root threshold should be less than the weight of any child branch. In our model, for the purpose of normalization,
we still choose a value within [0, 1] and set the average value 1/m for each branch.

Since the logic negative operator only has one parameter, we can consider it as an atomic condition. Now we discuss the
notion of weighted condition. The formal translation rule is given below and illustrated by Fig. 4(3).

RULE 3 (TR_Weight). Let C1, C2, . . . , and Cm be conditions. Suppose that they are expressed as separated condition trees T1,
T2, . . . , and Tm, where Ti = (Vi, Ei, Rooti). The condition tree WeightT = (V, E, Root) of condition ((C1, C2, . . . ,Cm), (a1, a2, . . . ,am),
thresholdw) is such that: V = V1 [V2 [� � � [Vm [{Root}, E = E1 [E2 [� � � [Em [{(Root, Rooti)j i = 1, 2, . . . ,m}, the threshold of
Root is thresholdw, and the weight of each branch (Root, Rooti) is ai.
Fig. 4. Condition Tree for logic and weighted conditions.

Y. Sun et al. / Information Sciences 179 (2009) 2629–2642 2637
Finally we discuss the historical condition tree. As discussed in Section 3, a history condition can be regarded as a
weighted condition with a set of condition vectors. Each condition vector could be further divided into sub weighted condi-
tions. So, we can express a historical condition as a combined condition tree by iteratively using translation rule TR_Weight.

So far, we have been able to express all kinds of conditions into a unified data structure, that is, the condition tree, by using
the above translation rules. In the following, we discuss how to efficiently evaluate conditions expressed as condition tree.

4.2. Key nodes and strong nodes

According to the definition of a condition tree, the overall evaluation of the tree can be computed based on the evaluation
of all its children atoms. However, we do not need to follow such approach all the time. Let us first consider the example
shown in Fig. 5, which is the condition tree representing the following compound condition Cpdc:

Cpdc = ((at-e1, at-e2, codc1), (0.3, 0.3, 0.4), 0.8)
Cpdc1 = ((cpdc2, at-e3, at-e4, at-e5), (0.34, 0.2, 0.3, 0.16), 0.6)
Cpdc2 = (at-e6 _ at-e7)

In such condition each at-ei is an atomic condition, and each Cpdcj is a compound condition. Cpdc can be rewritten in
terms of atomic conditions as follows:

Cpdc = ((at-e1, at-e2, ((at-e6 _ at-e7), at-e3, at-e4, at-e5), (0.34, 0.2, 0.3, 0.16), 0.6), (0.3,0.3,0.4),0.8))
From this example, we can see that atom conditions at-e1 and at-e2 are more relevant to the final evaluation of the whole

condition Cpdc than atoms at-e3 and at-e5 since if either at-e1 or at-e2 is FALSE, the overall evaluation of the tree is FALSE and
thus it is not necessary to evaluate other conditions. However, even if we know any result of at-e3 or at-e5, no matter TRUE or
FALSE, we still need to evaluate other conditions so as to achieve the final result. So we argue that at-e1 and at-e2 are impor-
tant nodes to accelerate the evaluation of such condition tree. The next questions are that whether there are other such
important nodes and that how to find them.

For this purpose, we should analyze again the above example and look for the reason what makes those atomic nodes
more important than other nodes. We observe that if the atomic node at-e1 were FALSE, the sum of its sibling weights would
be less than its parent threshold and result in the parent to be always evaluated to FALSE. Furthermore, if such case happens
to the nodes on the path from an atomic node ni to the root, ni being FALSE will result in the final evaluation of the whole tree
being FALSE. Similarly, we consider the contrary side of the problem. That is if one atom were TRUE the final result of con-
dition is TRUE immediately. Atoms at-e2 and at-e6 of the example in Fig. 6 show such case.

To formally describe above two types of node, we introduce concepts key node and strong node. Both of them can greatly
influence the final result of a condition, namely half of their instances could immediately result in the final evaluation of a
condition. The formal definitions and implement algorithm are given below.

Definition 15 (Key node, abbr. Knode). A key node Knode is an atom node of a condition tree such each branch on the path
pathk from Knode to the root is associated with a weight larger than the complement of its parent threshold in 1. More
precisely, the following inequality holds:
Branchwgtj > ð1-thresholdjÞ
where j = 1, 2, . . . ,k and k is the number of branches in pathk, Branchwgtj and thresholdj are the weight of each branch and the
threshold of its associated parent.

Definition 16 (Strong node, abbr. Snode). A strong node Snode is an atom node of a condition tree such on the path paths from
Snode to the root each branch is associated with a weight larger than the threshold of its parent. More precisely, the follow-
ing inequality holds:
Fig. 5. An example of a condition tree.

Fig. 6. Strong nodes in a condition tree.

2638 Y. Sun et al. / Information Sciences 179 (2009) 2629–2642
Branchwgtj P thresholdj
where j = 1, 2, . . . ,k and k is the number of branches in paths, Branchwgtj and thresholdj are the weight of each branch and the
threshold of its associated parent, respectively.

The detection process of key nodes and strong nodes is given in Procedure FindKeyAndStrongNodes. Since this is a process
from a leaf node to the root, the maximum complexity of procedure is equal to the height of a condition tree. Generally, key
node and strong node more possibly appear for a sub tree rather than for a whole condition tree, and with larger weight in a
condition. Thus we would mark it as a sub-class important node so as to take a different priority for calculation. Additionally,
one node would be only either key node or strong node. Obviously, taking into account above aspects could efficiently accel-
erate the determination of a condition.

Procedure for finding key nodes and strong nodes.
Procedure FindKeyAndStrongNodes (V, E, root)
Input: compound condition tree (V, E, root)
1. for each atom node ni 2 V, do step 2–12
2. tag = 0; q = ni

3. find parent p of q
4. while q != root and branchq > 1-thresholdp do
5. {q = p
6. find parent p of q; tag = 1;}
7. if q = root then mark q as key node
8. if tag = 0
9. then while q != root and branchq P thresholdp do
10. {q = p
11. find parent p of q}
12. if q = root then mark q as strong node
13. end procedure
Now we analyze how much important nodes could improve the efficiency of calculation. Suppose that there are n atom
nodes in a condition tree. Since each atom node has the same probability to be TRUE or FALSE, the result of a key node or
strong node can induce the final result of the whole condition with the probability of 0.5. So, if there were totally k key nodes
and strong nodes together for the whole tree, the probability of an immediate final determination is (1/2 + 1/22 + � � � + 1/2k).
From another view, the probability of indetermination after we calculate all important nodes is left only 1/2k. If we consider
more sub-class important nodes, the efficiency of computation would continually improve.
4.3. Determination process

After specifying the policy, we translate each restraint rule into a condition tree and mark key nodes and strong nodes.
Then the policy is enforced by determining the condition in each restraint rule, which takes into account the transaction data
and application context. In this section we would discuss the process of condition determination.

First, we one by one check the result of key nodes and strong nodes. If any key node is FALSE or any strong node is TRUE, the
final result is determined immediately. Otherwise, we continue calculating other atoms until we reach the final result of the
whole condition. The complete algorithm is illustrated in Algorithm ConditionDetermination below.

Algorithm for condition determination.

Y. Sun et al. / Information Sciences 179 (2009) 2629–2642 2639
Algorithm ConditionDetermination(V, E, root)
Input: compound condition tree (V, E, root)
1. for each key node kn 2 V, do step 2–4
2. calculate the associated atom condition ATkn

3. if the result of ATkn is FALSE
4. then return FALSE
5. for each strong node sn 2 V, do step 6–8
6. calculate the associated atom condition of ATsn

7. if result ATsn is TRUE
8. then return TRUE
9. for each node n 2 V without mark
10. calculate the associated atom condition ofATn

11. post-order travel the condition tree do step 12–14
12. for each inter node nj 2 V compute the sum of contribution from its each child Ei: Con ¼

Pm
i¼1ai � Ei

13. if Con < thresholdj

14. then return FALSE
15. return TRUE
5. Case study

In this section, we would present a comprehensive example to illustrate how to specify and enforce a flexible security
policy by our method.

Suppose that in a supply chain management system, a supermarket enterprise, like Wal-Mart, is planning to enforce fol-
lowing flexible security policies in transaction databases and application systems:

1. Access rights to sensitive information are assigned to users according to the roles they have. Senior roles are assigned
more rights than juniors.

2. Users are authorized different roles depending on their qualification, such as attributes, certifications, and underlying
transactions etc.
Fig. 7. A comprehensive example.

2640 Y. Sun et al. / Information Sciences 179 (2009) 2629–2642
3. The roles that a user takes on can be updated by associated restriction rules.
4. Some access rights are restrained by application context, like time, date, address and other condition.

To implement the above policies in detail, we should specify them as concrete restraint rules by using our proposed policy
specification language. We adopt a unified form of weighted conditions to synthetically consider different factors. The details
are as follow.

We would first specify the atomic and compound conditions, which are shown in Fig. 7a condition table. Then we define
the restraint rules, which are described in the following and summarized in the restraint rule table of Fig. 7b.
Rupdt :: ES1 ¼ ðES; cp2Þ ! ðSESÞ
This is a role update rule that defines the prerequisite that how a user could take on a senior role SES (senior electric appli-
ance supplier) on the assumption that it has already been assigned role ES (electric appliance supplier). Such qualification is
cp2, namely the trade amount should exceed 5.5 million dollar or the sale quantity is larger than 10,000 pieces.
Rupdt :: ES2 ¼ ðPhS; cp3Þ ! ðSPhSÞ
This is also a role update rule. Like ES1, it defines how role PhS (pharmacy supplier) can be updated to role SPhS (senior
pharmacy supplier).
Rupdt :: ES3 ¼ ðSES; cp4Þ ! ðVIPÞ
This is a role update rule and describes how the role SES can be updated to role VIP. Unlike the above role update rules, it is
associated with a weighted historical condition and takes into account transactions in the past four years. Although the con-
sideration of each year is the same condition cp2, the impact weights of them are different.
Pasgn :: AS1 ¼ ðp1; cp6Þ ! ðRGTÞ
This is an assignment rule that gives the prerequisite for normal registered role RGT to acquire permission p1. It defines
the following conditions: the submit time should be within deadline, a user should hold a certification of ISO9000 or be cer-
tified by Commercial Ministry, as well as the rank is within top 500.
Pactv :: AP1 ¼ ðat1Þ ! ðp1Þ
This is a permission activation rule that defines the revocation prerequisite of permission p1, namely the modification of a
bid is restricted before deadline.
Uauth :: UR1 ¼ ðNorM; cp5Þ ! ðRGTÞ
This is a user authorization rule that presents the qualification for an anonymous browser to acquire role RGT (registered
user). After the rules established, key nodes and strong nodes are detected and marked in the restraint rule table. With the
help of the condition table, we can reuse the specified atomic or compound conditions when defining other rules.

To enforce the restraint rules, some necessary modifications on traditional data should be made. The added information is
depicted as the shaded columns in thepermission table, user table and role table of Fig. 7c–e, respectively.

6. System overview

In this section, we would discuss how to integrate the proposed method into legacy systems. Generally, a security admin-
istrator of an enterprise is responsible for specifying restraint rules according to security requirements and business mis-
sions. The system architecture to implement the proposed model is presented in Fig. 8, in which black thin arrow lines
denote commands while thick arrow lines denote data flows. To support interoperation among heterogeneous platform,
we adopt XACML to express security policies. XACML is the extensible access control language specified by OASIS Standard
bodies.

Suppose a manufacturer is domain A in Fig. 8 while its partner is domain B. There are three main components that are
parts of the system architecture. The first component is the application system, which denotes an underlying legacy system
processing operational business transactions, like the ERP system in an enterprise. The second component is the platform to
specify and manage restraint rules, denoted as security specification in Fig. 8. The third component is the access control sys-
tem that processes authorization requests, referred to as security decision. The security management is summarized as two
phases:

Policy generation phase. This phase is represented as circle nodes in Fig. 8. The policy specification and administration mod-
ule is responsible for supporting the specification and management of restraint rules. It periodically queries the transaction
database and publishes the XACML security policies according to the specified restraint rules.

Authorization decision phase. This phase is represented as diamond nodes in Fig. 8. When the system receives an access
request, the policy decision module matches the request parameters with the activation conditions of permission. If the con-
ditions are related with system attributes, the system attributes acquirement module is invoked and returns the system
parameters. If all conditions are satisfied, the policy decision module transfers the request to the application system. Other-
wise, it refuses the request. The corresponding 4 steps are shown as diamond nodes in Fig. 8.

Fig. 8. System architecture.

Y. Sun et al. / Information Sciences 179 (2009) 2629–2642 2641
The above discussion shows that the proposed model can provide active access control to enterprise resources for flexible
policies and collaborations. As an example, some of our research results have been applied to a practical system of ‘‘Property
Rights Exchange System” [21]. Details are omitted here.

7. Conclusions and future work

In this paper we have proposed a novel approach to specify and enforce flexible security policies for active cooperation. It
extends the RBAC model with the notion of restraint rules that are enforced by authorization processes. To support flexible
policy specification, we introduce the concept impact weight in the conditions of restraint rules. We have also presented the
condition tree data structure that efficiently supports condition evaluation. Furthermore, we have discussed the system archi-
tecture implementing above approach and supporting interoperation among heterogeneous platforms.

As part of future work, we plan to extend this work to address the issue of optimization of restraint rules. We also plan to
investigate to combine trust and delegation with this model so as to meet special authorizations. Moreover, we plan to intro-
duce the notion of semantic authorization in our approach to support universal access control on web.

Acknowledgements

The authors would like to sincerely appreciate Dr. Ninghui Li, from CERIAS and Department of Computer Science of Pur-
due University, for his suggestions and comments on this paper. We also thank the anonymous reviewers for their valuable
suggestions. Part of the first author’s work was completed when she was as a visiting scholar at Purdue University of US. This
work is supported by the National High Technology Research and Development Program (863 Program) of China
(2006AA01A113), by the US NSF Grant 0712846 ‘‘IPS: Security Services for Healthcare Applications”, by the NSF grant of
Shandong Province of China (Y2008G28), and by the sponsor of CERIAS.

References

[1] R. Adaikkalavan, S. Chakravarthy, Active authorization rules for enforcing role-based access control and its extensions, in: Proceedings of the 21st
International Conference on Data Engineering Workshops, ICDEW, 2005, p. 1197.

[2] N.R. Adam, V. Atluri, E. Bertino, E. Ferrari, A content-based authorization model for digital libraries, IEEE Transactions on Knowledge and Data
Engineering 14 (2) (2002) 296–315.

[3] M.A. AI-Kahtani, R.S. Sandhu, A model for attribute-based user-role assignment, in: Proceedings of 18th Annual Computer Security Applications
Conference, 2002, pp. 353–362.

[4] M.A. AI-Kahtani, R. Sandhu, Induced role hierarchies with attribute-based RBAC, in: Proceeding of ACM SACMAT, Como Italy, 2003, pp. 142–148.
[5] J. Bacon, K. Moody, W. Yao, A model of OASIS role-based control and its support for active security, ACM Transaction on Information and System

Security (TISSEC) 5 (4) (2002) 492–540.
[6] E. Bertino, P. Samarati, S. Jajodia, An extended authorization model, IEEE Transactions on Knowledge and Data Engineering 9 (1) (1997) 85–101.
[7] Matthew Bishop, Computer Security: Art and Science, Addison-Wesley, 2003.
[8] J. Biskup, S. Wortmann, Towards a credential-based implementation of compound access control policies, in: Proceedings of the Ninth ACM

Symposium on Access Control Models and Technologies, New York, USA ACM SACMAT’04, 2004, pp. 31–40.
[9] S. Busch, B. Muschall, G. Pernul, T. Priebe, Authrule: a generic rule-based authorization module, in: Proceedings of the 20th Annual IFIP WG 11.3

Working Conference on Data and Application Security, 2006, pp. 267–281.
[10] D.F. Ferraiolo, S. Gavrila, V. Hu, D.R. Kuhn, Composing and combining policies under the policy machine, in: Proceedings of ACM SACMAT, Stockholm,

2005, pp. 11–20.
[11] A. Herzberg, Y. Mass, J. Mihaeli, Access control meets public key infrastructure, or: assigning roles to strangers, in: Proceedings of the IEEE Symposium

on Security and Privacy, 2000, pp. 2–14.

2642 Y. Sun et al. / Information Sciences 179 (2009) 2629–2642
[12] A. Kern, Advanced features for enterprise-wide role-based access control, in: Proceedings of the 18th Annual Computer Security Applications
Conference, Las Vegas, Nevada, USA, December 2002, pp. 333–342.

[13] A. Kern, A. Schaad, J. Moffett, An administration concept for the enterprise role-based access control model, in: Proceedings of SACMAT’03, June 1–4,
Como, Italy, 2003, pp. 3–11.

[14] P. McDaniel, On context in authorization policy, in: Proceedings of the Eighth ACM Symposium on Access Control Models and Technologies, Como,
Italy, 2003, pp. 80–89.

[15] J.S. Park, K.P. Costello, T.M. Neven, J.A. Diosomito, A composite RBAC approach for large, complex organization, in: Proceedings of ACM SACMAT, 2004,
pp. 163–171.

[16] T. Priebe, W. Dobmeier, N. Kamprath, Supporting attribute-based access control with ontologies, in: Proceedings of the First IEEE International
Conference on Availability, Reliability and Security (ARES’06), 2006, pp. 465–472.

[17] B. Shafiq, J.B.D. Joshi, E. Bertino, A. Ghafoor, Secure interoperation in a multidomain environment employing RBAC policies, IEEE Transaction on
Knowledge and Data Engineering 17 (11) (2005) 1557–1577.

[18] R.S. Sandhu, D. Ferraiolo, The NIST model for role-based access control: towards a unified standard, in: Proceedings of the Fifth ACM Workshop on
RBAC, 2000, pp. 47–63.

[19] B. Shields, O. Molloy, G. Lyons, J. Duggan, Using semantic rules to determine access control for web services, in: Proceedings of the 15th International
Conference on World Wide Web, 2006, pp. 913–914.

[20] E. Song, R. Reddy, R. France, I. Ray, G. Georg, R. Alexander, Verifiable composition of access control and application features, in: Proceedings of SACMAT,
Stockholm, 2005, pp. 120–129.

[21] Y.Q. Sun, P. Pan, PRES—a practical flexible RBAC workflow system, in: Proceedings of the Seventh International Conference on Electronic Commerce,
Xi’an, China, August 2005, pp. 653–658.

[22] L.Y. Wang, D. Wijesekera, S. Jajodia, A logic-based framework for attribute based access control, in: Proceedings of the FMSE’04, ACM Workshop on
Formal Methods in Securing Engineering, US, 2004, pp. 45–55.

[23] Y. Zhong, B. Bhargava, M. Mahoui, Trustworthiness based authorization on WWW, in: Proceedings of IEEE Workshop on Security in Distributed Data
Warehousing, New Orleans, 2001, pp. 1–6.

	Specification and enforcement of flexible security policy for active cooperation
	Introduction and motivation
	Related work
	Active authorization management model
	Overview of the proposed model
	Atomic conditions
	Compound conditions
	Restraint rules

	Calculation of restraint rules
	Condition tree
	Key nodes and strong nodes
	Determination process

	Case study
	System overview
	Conclusions and future work
	Acknowledgements
	References

