
Chinese Journal of Electronics
Vol.21, No.3, July 2012

Context-Aware Task Allocation for Quick

Collaborative Responses∗

SUN Yuqing1, Matthias Farwick2, Patrick C.K. Hung3, Dickson K.W. Chiu4 and JI Guangjun1

(1.School of Computer Science and Technology, Shandong University, Jinan 250100, China)

(2.Institute of Computer Science, University of Innsbruck, Austria)

(3.Faculty of Business and Information Technology, University of Ontario Institute of Technology, Canada)

(4.Dickson Computer Systems, Hong Kong)

Abstract — Under some emergencies, persons are re-

quired to arrive quickly at the scene and collaborate on
sensitive tasks. To ensure effective performance of these

tasks and be compliant with business regulations, user con-
text should be considered and security requirements are

desired. In this paper, we tackle this challenging prob-

lem of quick collaborative response from the view of task
allocation with user authorization. The considered Quick-

response task allocation problem (QTAP) answers how to
find a user-task allocation solution, the group of qualified

users who can fastest arrive at the scene to fulfill the col-

laborative processes and satisfy the required security con-
straints. We study the computational complexity of this

problem and solve it by the reduction to the well-studied
scheduling problem. We further discuss an important ex-

tension of QTAP that supports task dependencies and pro-

pose an algorithm to solve it.

Key words — Collaboration, Task allocation, Context

awareness, Authorization.

I. Introduction and Motivation

Under some emergencies, persons are required to quickly arrive

at the scene and collaborate on sensitive processes, which are un-

known in advance and may change at any moment. For example, in
the aviation industry, highly complex and delicate processes have to

be executed on a routine basis in order to guarantee proper mainte-
nance of aeroplanes before a flight. A maintenance technician first

checks the important functionalities of the planes, often requiring a

second independent check by another technician. Also the techni-
cians need to be agile while inspecting, such as moving in and around

the plane. This makes the use of handheld devices appealing, which
allows the technicians to perform certain tasks of the process at spe-

cific locations, such as at a safe position or the only position where

they can effectively perform the required tasks. When exceptional
vulnerabilities of parts have been detected, the maintenance process

needs to be quickly adapted without violating security constraints
of the original inspection process. In some cases, task performers

need to be warned or called to the scene for assistance. During

these processes, quick collaborative response is required since any

delay would cause huge loss, possibly in the range of one to sev-
eral hundred thousand dollars a day for an airline company. Other

examples of emergent situations include nature disasters, terrorist
attack, and healthcare services, in which the requirements of quick

collaborative response are quite similar.

In such emergency applications, the required tasks are unknown
or unpredictable in advance. To effectively schedule the task per-

formers for quick collaborative response, the access control system
of the process engine should have the collaborative capabilities to

select appropriate users and support corresponding authorizations

concerning necessary security and business factors. Firstly, secu-
rity constraints are desired on authorizations. Since multiple per-

sons may be involved in an urgent collaboration playing different
roles for sensitive tasks, security constraints require enforcement on

their authorizations. For example, the widely adopted Separation

of duty (SoD) constraint requires a user not being authorized to
more than a certain number of tasks to a sensitive process in order

to prevent fraud[1]. Secondly, performers need to possess certain
qualifications in order to ensure effective performance or regulation

compliance. For instance, the routine double check of an airplane

should be accomplished by two engineers. Thirdly, both user and
system contexts should be considered. When persons are involved in

emergency processes, the elapsed time for finishing a task includes
the time for a performer to attend the location plus the time for

executing the task. If there is more than one candidate for a task,

it is desirable to select the most suitable candidate from the view
of quick collaborative response.

In this paper, we tackle the quick collaborative response prob-
lem from the view of task allocation by user authorizations. Based

on our previously proposed Context-aware authorization model

(CAM)[2], we study the Quick-response task allocation problem
(QTAP) to return a solution of user-task assignments such that

the selected qualified users can fastest arrive at the scene and fulfill
the urgent collaborative tasks, while satisfying security constraints.

We analyze the computational complexity of this problem and show

that it is NP-hard in general. A solution to QTAP is presented by
the reduction to the well studied scheduling problem under some

construction tricks so as to benefit from the previous research re-
sults. We also discuss a useful extension of QTAP considering task

dependencies and provide an algorithm to solve it.

∗Manuscript Received Apr. 2011; Accepted Oct. 2011. This work is supported partly by the National Natural Science Foundation
of China (No.61173140), the Science Foundation of Shandong Province (No.Y2008G28) and the Independent Innovation Foundation of

Shandong University (No.2010JC010), The Opeh Foundation of the Satate Key Lablratory of Computer Arehiteeture, Chinese Academy
of Sciences.

396 Chinese Journal of Electronics 2012

The paper is organized as follows. Section II compares the

related works. After reviewing the Context-aware authorization
model in Section III, we discuss the QTAP problem and present

a solution in Section IV. Next, we discuss the QTAP extension con-

sidering task dependencies, together with a heuristic algorithm and
experiments in Section V. Finally, we discuss the merits and some

implementation details of our solution in Section VI and conclude
the paper in Section VII.

II. Related Work

The existing literature provides a variety of techniques ad-
dressing secure authorizations in context-aware task allocation[3].

Sun et al. propose and enforce flexible security policies for active
cooperation[4] . Hong et al.[5] considers various computing context,

user context, and physical context, and propose a conceptual model

and methodology for adapting existing enterprise services into ubiq-
uitous ones. The authors in Ref.[6] discuss the problem of autho-

rizations under qualification and constraints, as well as to present
an algorithm to find a feasible authorization solution. Although the

idea of user attributes based authorization in these works is similar

with the consideration of user qualification in task-user assignments
in our work, there is a distinct difference. They do not consider

the geographic information about users and event sites. The task
performers in their solutions may not be the most suitable group to

quickly respond in emergency situations.

Our work is also related with the business process manage-

ment. Some discuss how to assign tasks to users under pre-specified

constraints[7]; and some discuss the authorization management in
business processes based on Web services[8,9]. Mendling et al.[10]

describe how SoD constraints can be expressed for BPEL4People
workflows. Paci et al.[9] investigate the resiliency problem in WS-

BPEL business processes as well as considering separation of duty

and binding of duty constraints. In Ref.[11], Wang and Li pro-
posed the Role-and-relation-based access control (R2BAC) model

for workflow systems considering both user’s relationships and role
memberships when making access decision. However, from a con-

ceptual standpoint, our considerations and method are significantly

different. Their works mostly support the user task assignments for
a predefined workflow, while we focus on the secured task allocation

in an active collaboration, where the required tasks and the candi-
dates for each task are unknown in advance and may vary at any

moment. Specially, although the workflow satisfiability problem un-

der multiple constraints in Ref.[11] seems similar with our problem,
a distinct difference is that we take users’ geographic position into

consideration for the authorization decision such that the optimal
authorization solution could be found for quick response, which was

not discussed in their work.

Recently, the concept of user location has received attention by
access control researchers. This has constituted in a new class of

access control models called Location-based access control (LBAC).
LBAC technologies allow taking users physical location into account

when determining their permissions. Ardagna et al.[12] integrate

location-based conditions into access control by checking the re-
quester’s location as well as credentials. Ray et al. extend the

Mandatory access control (MAC) by incorporating user location
information in determining whether a subject can gain access to

a given object[13] . The widely adopted Role based access control

model (RBAC)[14] is also extended to support certain geographic
requirements[15], such as GEO-RBAC[16]. What these works con-

cerned is determining whether to authorize users access rights when
they are in a specific position by evaluating the predefined location

based conditions. However, under emergencies, quick enforcement

of tasks is desired and the performers are required to arrive quickly
at the scene. The most important requirement in such scenario is

how to coordinate users according to their physical positions rather
than to make an authorization decision after a user is already there,

which was not addressed in their work. They either do not provide

an access control mechanism supporting authorizations for quick
collaborative response. Although the quick response problem was

discussed in the preliminary version of this paper[2] as well as in the

Refs.[17, 18], the authors did not consider the duration of each task
as a limiting factor. In practice, each task in a business process may

last a period of time and the sequence between them influences the
total response time. Thus, the problem and the proposed algorithms

in this paper are quite different with regards to this.

III. The Quick-response Task Allocation
Model

In this section, we overview our proposed Context-aware autho-

rization model (CAM for short), which supports the runtime allo-

cation of tasks for urgent instance[2]. This is an extension to the
most widely adopted Role-based access control model (RBAC)[14].

In CAM, roles are granted with access rights to perform some tasks
and are hierarchically inherited. Users are the subjects to be as-

signed responsibilities to perform certain job functions through roles

memberships. Let U and R respectively denote the set of users and
roles in a given system. The user role assignments UR ⊆ U × R

are implemented by evaluating a user’s attributes against a role’s
qualification conditions. This mechanism can ensure the flexibility

of authorization management since one may adjust the assignments

by redefining the qualification conditions. By role hierarchies, the
users who are the members of a senior role are also the members of

its juniors, while all permissions assigned to a junior role are inher-
ited by its seniors. However, whether a user definitely execute a task

through the assigned or inherited role in an instance depends on the

event and user context, as well as the specified security constraints.
Each task includes a set of necessary permissions, namely the

approvals of a user to operate on one or more protected objects
like a database table when achieving the task objective. Let A

represent the set of tasks in a system. We define the predicate

dur(a : A) to return the average required duration of fulfilling task
a, which can be estimated according to daily experiences. We adopt

DURA = {(a, dur(a))|a ∈ A} to denote the set of durations for tasks
in A. We also define the following two predicates ActU(u : U) → 2A

and UserA(a : A) → 2U to calculate the tasks that user u is allowed

to perform and to calculate all the users who are authorized to per-
form task a, respectively.

Constraints are a fundamental mechanism in RBAC systems

to enforce high-level security requirements. In CAM, security con-
straints are specified on tasks since they are often the objects of

the fundamental operations in a system, and should be satisfied
on both static task-role assignments and runtime task-user alloca-

tion. The most frequently considered constraints are Mutual ex-

clusion (ME) and Binding of duty (BD), which have been well es-
tablished in previous literature Refs.[1, 9, 6]. A Mutual Exclusion

constraint is defined as ME(As), where As ⊆ A, that requires a
user being allowed to perform only one task in As. For example,

ME({Issuecheck, Initcheck}) enforces that a user is only allowed to

execute either initiate a check or issue the check. This constraint
is a powerful means to limit the distribution of critical permissions

and is widely used to support the Separation of Duty policy or
to enforce the conflict-of-interest policy. A Binding of Duty con-

straint, defined as BD(As), where As ⊆ A, restricts the set of tasks

As being performed by the same user. The purpose of such con-
straint is to simplify the management of users and roles by requir-

ing a user taking on a series of related responsibility. For example,
BD({Initproj , Modiproj}) requires that any user who initiates a

project must have the right to modify the project.

Since there often coexist multiple constraints in a system, we
need to ensure no conflict between them. For example, if a ME con-

straint requires that no user is authorized for both tasks a1 and a2,
yet a1 and a2 are also associated with a BD constraint (i.e. they

Context-Aware Task Allocation for Quick Collaborative Responses 397

have to be performed by the same user), it is impossible to assign

these tasks to users without violating these constraints. Therefore,
the condition |As ∩ A′

s| ≤ 1 must hold for any pair of constraints

ME(As) and BD(A′
s) so as to ensure the consistency of constraints.

Furthermore, to avoid the ambiguity of multiple ME constraints, we
require no common task existing between two ME constraints. Over-

all, the above entities and relationships together present a system
environment, which is called the configuration.

Definition 1 [Configuration] A configuration is given as a tuple

〈U, R, RH, UR, A, C, DURA〉, where U is a set of users, R is a set of
roles, RH ⊆ R×R defines role hierarchies, UR is the set of user-role

assignments that any (u, r) ∈ UR, where u ∈ U and r ∈ R, repre-
sents u is qualified for r, A represents the set of tasks, C is a set

of security constraints that should be followed in any instance and

each constraint is in the form ME(As) or BD(A′
s), As, A′

s ⊆ A,
and DURA is the set of task durations.

In CAM, an instance of urgent collaborative process is defined
as a dynamically customized set of tasks, denoted as DA, under the

system context of event location and user location. To coordinate

the task performers, access control systems have to be flexible and
efficient in runtime task allocation via authorizations. When more

than one available candidate is qualified for a task, the fastest can-
didate should be selected for quick response purpose. In practice,

the most appropriate users are highly relevant with the context of

users and events, such as the event location, users’ location, time,
users’ status (ready or busy), etc. A possible solution of computing

user delay is by the location context, which is crucial for the pur-
pose of quick response and can be easily obtained by sensors such

as Global positioning system (GPS) technologies. Portable mobile

devices such as cell phones, PDAs, and notebooks can also provide
the abundant context by collecting and interpreting user’s inter-

action response[5,19]. Previous literature has well investigated the
location based predicates and use them to predict user delay under

consideration of other environment contexts such as traffic[12]. In

the following, we adopt the predicate Delay(u) to denote the delay
of user u before arriving at the current scene.

As a result, whether a user is assigned to a task in an emer-
gency event is based on four aspects: (1) user’s available status at

that moment, (2) user delay, (3) user qualification, and (4) security

constraints. We adopt the set ContextUDA = {(u, Delay(u))|u ∈
U ∧ u.status = ready} to denote the delay for each available user

in U arriving at some point under event DA, which reflects the first
two aspects of context. In the next section, we discuss how to iden-

tify such appropriate users for the quick collaborative response in

an event.

IV. Towards Quick Collaborative
Response

In this section, we discuss the Quick-response task allocation

problem (QTAP) to find a task-user allocation solution that aims
at the execution of an emergent process instance in the quickest

time. We begin our discussion with an example.

1. An illustrative example and runtime task allocation
Example 1 Here is an illustrative process of airplane mainte-

nance. The given dynamically customized set DA of tasks and their
average duration time are listed below.

DA = {a1, a2, a3, a4, a5}, where

a1 : Check and maintain the weather radio and GPU
a2 : Check and maintain the engine and landing gears

a3 : Check and maintain the engine and TAT probe etc.
a4 : Generate the report of airplane condition.

a5 : Recheck the findings of vulnerability.

DURA = {(a1, 20mins), (a2, 10mins), (a3, 30mins), (a4, 25mins),
(a5, 15mins)}.

Here, (a1, 20mins) means the average period of fulfilling
task a1 is 20 minutes, also denoted as dur(a1) = 20. The

set C of involved security constraints are also given. C =

{ME(a2, a3), ME(a4, a5), BD(a1, a4)}.
On the assumption that all qualified users are on the

event site and each task is performed by a different person,

these tasks can be started immediately and performed in par-

allel. Thus the elapsed time of fulfilling all tasks, denoted as
Elapsed time(DA)on site, is the maximum of each task dura-

tion, namely Elapsed time(DA)on site = max{dur(a1), dur(a2),
dur(a3), dur(a4), dur(a5)} = max{20, 10, 30, 25, 15} = 30(mins).

However, due to some unavoidable reasons, some users may de-

lay their attendance and some may be unavailable at the moment of

the event. Thus, the elapsed time (since event happens) of fulfilling
a task should include both the task duration and the user delay. If

a user performs more than one task, the elapsed time would be the
summation of these tasks’ durations with his attendance delay.

For simplicity, we omit the concrete user set, role set and role

hierarchies for the whole system. Instead, we are supposed to give

the available qualified users for DA, denoted as UserAready. Obvi-
ously, UserAready(a) is a subset of the set of qualified users for a,

that is

UserAready(a) ⊆ UserA(a).

UserAready(a1) = {Alice, Bob},
UserAready(a2) = {Alice, Caro},
UserAready(a3) = {Caro, Dan},
UserAready(a4) = {Alice, Bob},
UserAready(a5) = {Dan, Bob}.
The given context is ContextUDA = {(Alice, 15mins),

(Bob, 20mins), (Caro, 40mins), (Dan, 30mins)}.
Under the above system configuration and context, all feasible

solutions of task allocation that satisfy the security constraints are

enumerated in Table 1. The elapsed time of fulfilling the tasks in

DA under each solution is also calculated. For example, in solu-
tion s1, we have (Alice, a1) (i.e. Alice performs a1), (Alice, a2),

(Caro, a3), (Alice, a4), and (Bob, a5). Since Alice has to perform
three tasks a1, a2 and a4 one by one in this solution, her total

elapsed time is then: delay(Alice) + dur(a1)+ dur(a2) + dur(a4).

Overall, the elapsed time of fulfilling all tasks in DA under s1, de-
noted as Elapsed time(DA)s1 , should be the maximum of each user

and is calculated as:

Elapsed time(DA)s1 = max{delay(Alice) + dur(a1)+

dur(a2) + dur(a4), delay(Caro) + dur(a3), delay(Bob) + dur(a5)}
= max{15 + 20 + 10 + 25, 40 + 30, 20 + 15} = 70(mins)

Table 1. Task allocation and the elapsed time

of fulfilling DA

Solution Task allocation in each solution Elapsed

ID a1, a2, a3, a4, a5 time

s1 Alice,Alice, Caro, Alice, Bob 70

s2 Alice,Alice, Caro, Alice,Dan 70

s3 Alice,Alice, Dan, Alice, Bob 70

s4 Alice, Alice,Dan, Alice, Dan 75

s5 Alice,Caro, Dan, Alice, Bob 60

s6 Alice,Caro, Dan, Alice,Dan 75

s7 Bob, Alice, Caro, Bob, Dan 70

s8 Bob, Alice,Dan, Bob, Dan 75

s9 Bob, Caro, Dan, Bob, Dan 75

For other task-user assignment solutions, the elapsed time are

listed in Table 1. From this example, we observe that the elapsed
time for fulfilling the same set of tasks varies with the task allo-

cation, which is influenced by the user delay and the number of

tasks that a user performs. To achieve the quick-response purpose,
we should select the group of users under security constraints with

the minimum elapsed time for them to fulfill the tasks. Now, we
introduce the notation of Quick-response solution for this purpose.

398 Chinese Journal of Electronics 2012

Definition 2 (Quick-response solution) Given a configura-

tion 〈U, R, RH, UR, A, C, DURA〉, a set DA of tasks, and a con-
text ContextUDA, URA ⊆ U ×A is called a Quick-response solution

(QR Solution for short) if and only if the following four conditions

hold: (1) Every task a ∈ DA is assigned to one user; (2) For each
(u, a) ∈ URA, u.status = ready and u ∈ UserA(a); (3) No con-

straint in C is violated, and (4) The elapsed time for the selected
users in URA to fulfill the tasks in DA is minimal under ContextUDA.

The elapsed time of fulfilling all tasks under QR Solution is

called the optimal time in this paper. Thus, a meaningful problem is

to verify whether there exists a feasible task-user allocation solution
for the given DA under configuration 〈U, R, RH, UR, A, C, DURA〉;
and when there are multiple feasible solutions, which one is the QR

Solution under ContextUDA.

2. The quick-response task allocation problem

Definition 3 (QTAP) Given a set DA ⊆ A of tasks, a con-
figuration 〈U, R, RH, UR, A, C, DURA〉, and a context ContextUDA,

the Quick-response task allocation problem (QTAP) is looking for

the QR Solution for DA.

Theorem 1 QTAP is NP-hard.

Proof This theorem can be proven by reducing the NP-

complete Partition Problem to QTAP. In Partition problem, we
are given a number of positive integers S = {n1, n2, · · · , nt} and

m = 1/2
∑t

j=1 nj and are asked whether there exists two disjoint
subsets S1 and S2 of S such that

∑
j∈Si

nj = m for i = 1, 2.

Now we construct a configuration 〈U, R, RH, UR, A, C, DURA〉, a

set DA ⊆ A of tasks, and ContextUDA as follows:

Let U = {u1, u2}, R = {r1, r2}, RH = ∅, C = ∅, A =
DA = {a1, a2, · · · , at}. Each user is qualified for every role, namely

UR = {(u1, r1), (u1, r2), (u2, r1), (u2, r2)}. That is to say, the set

of tasks has the same size with the integer number in the Partition
Problem. Each task is assigned to every role. So we could conclude

that each user is qualified for every task, namely UserAready(ai) =
{u1, u2}, i ∈ [1, t]. Let DURA = {(a1, n1), (a2, n2), · · · , (at, nt)}.
That is to say, the execution duration of ai is the same with the

corresponding integer, dur(ai) = ni(i ∈ [1, t]). ContextUDA =
{(u1, 0mins), (u2, 0mins)}. Intuitively, each integer ni placing in

set S1 in the Partition Problem corresponds to task ai assigning
to user u1 in QTAP; Otherwise, ni placing in S2 indicates task ai

assigning to u2 in QTAP;

Now, we prove that there is a partition of S = {n1, n2, · · · , nt}
if and only if we could find the QR Solution for DA and the op-
timal time is half of the sum of all task durations. On one hand,

assume there is a partition S1 and S2 of S satisfying the require-

ments. We now construct a QR Solution for DA. For every i ∈ [1, t],
if ni ∈ S1, we assign ai to u1; otherwise, if ni ∈ S2, we assign

ai to u2. Since S1 and S2 are disjoint, each task is assigned to
only one user, either user u1 or user u2. According to above con-

struction, the elapsed time for u1 fulfilling his/her assigned tasks is

tu1 = delay(u1) +
∑

ni∈S1
dur(ai); while the elapsed time for u2

fulfilling his/her assigned tasks tu2 = delay(u2) +
∑

nj∈S2
dur(aj).

Obviously, tu1 = tu2 and this is the fast way to fulfill all the tasks

in DA. Therefore, the assignment solution is optimal for QTAP.

On the other hand, assume there exists a QR Solution for
DA, whose optimal time is half of the sum of all task durations.

Since there are only two candidate users to perform the tasks
in DA and the delay time for them being the site is same, the

most efficient way to fulfill all the tasks is to equally assigned the

tasks to them according to the task duration (if it exists). The
QR Solution must be in the case that DA are divided into two

sets, where the sum of task durations in them are equal, namely

delay(u1) +
∑

ni∈S1
dur(ai) = delay(u2) +

∑
nj∈S2

dur(aj). Now

we construct the partition of S. For every i ∈ [1, t], if ai is assigned

to user u1 in QR Solution, we place integer ni in the set S1; oth-
erwise, if ai is assigned to user u2, we place integer ni in the set

S2. Since in QR Solution each task is assigned to only one user, the
corresponding integer ni is placed into either S1 or S2, namely S1

or S2 are disjoint. This indicates S1 and S2 are the partition of set

S.

QTAP is intractable means there exist instances that take ex-
ponential time in the worst case. However, many encountered in-

stances may be efficiently solvable. Our ultimate goal is to find
the QR Solution for a given set of tasks DA under configuration

〈U, R, RH, UR, A, C, DURA〉 and ContextUDA. Practically, not ev-

ery configuration has a feasible task assignment solution for a set
DA of required tasks, let alone a choice for quick response. For ex-

ample, if Alice is the only available user qualified for tasks a1 and
a2 and there is a constraint ME({a1, a2}), then there is no way to

assign both tasks to a user without violating the mutual exclusion

constraint. So, it is necessary to check whether there is a feasible
assignment solution that could perform DA. Furthermore, if there

are more than one choices the following question arises: which one
is the optimal.

3. The solution to QTAP

In this subsection, we present a solution to QTAP by reducing it

to the classical scheduling problem. Scheduling deals with the allo-
cation of scarce resources to tasks over time. It is a decision-making

process with the goal of optimizing one or more objectives[20] . A

scheduling problem can be describe by a triplet α|β|γ, where the
α field denotes the machine environment, the β field provides de-

tails of processing characteristics and constraints, and the γ field
describes the objective to be minimized. One of the classical forms

of scheduling problem pm|dj , pij |Cmax is on the unrelated parallel

machines with deterministic parameters and all tasks are available
for processing at time zero, denoted as PMAC. Although PMAC

is NP-hard, there are a large number of efficient approximation al-
gorithms in the Ref.[20]. This class of problems can be described

as follows. There are m machines M = {Mi|i = 1, · · · , m} and n

jobs T = {tj |j = 1, · · · , n} jobs. Each job tj has processing time
pij on machine i and is associated with a due date dj representing

the committed completion date. The objective is to find a schedule
that minimize the makespan.

The reason that we solve QTAP by reduction method rather

than designing a specific algorithm is that we found the common

characteristics between these two problems. If we make some tricks
on the construction, QTAP can transformed to the scheduling prob-

lem and therefore we can benefit from the decades of research results
of solving the scheduling problem. In the following, we would first

make a sanitary check so as to get rid of those unfeasible cases. Then

we present the details on the reduction and discuss how to find the
optimal one on the feasible cases. Please refer the algorithm in Fig.1

also.

In QTAP, we are given a configuration 〈U, R, RH, UR, A, C,
DURA〉, a dynamically generated set DA of tasks and ContextUDA.

Now we generate the PMAC scheduling problem according to these
parameters. Intuitively, users are regarded as machines and task tj
assigning to machine Mi in the scheduling problem indicates that

user ui is assigned the task aj in the resulting QR Solution.

(1) Sanitary check and pre-process For each task a ∈ DA,
we enumerate all available qualified users UserAready(a). If one of

such set is empty, currently there is no available qualified user for a.
This indicates there is no feasible task assignment solution for DA.

To handling the processing time of each task, we may give an ap-

proximate bound since there is no strict deadline. The release time
can be set time zero, namely each task can be processed at the be-

ginning. The possible maximum of the elapsed time for fulfilling all
tasks in DA is max due = max(uj∈U∧uj.status=ready){delay(uj)+
∑

ai∈(ActU(uj)∩DA) dur(ai)}, namely the maximum of the summa-

tion of tasks’ durations that each user is qualified for. The upper
bound of due date for each task can be set max due since a user is

allowed to take on more than one tasks in DA and to perform them

sequentially.

(2) Handling of users and tasks

For each user ui ∈ U , we set it as a machine Mi and create a

Context-Aware Task Allocation for Quick Collaborative Responses 399

For each task a ∈ DA, do

UserAready(a) = {u ∈ UserA(a) ∧ u.state = ready};
If UserAready(a) = ∅ Then return False;

max due = max(uj∈U∧uj.state=ready){delay(uj)+
∑

ai∈(ActU(uj)∩DA) dur(ai)}; M = ∅.
For each user ui ∈ U , do

Set it as a machine Mi, M = M ∪ {Mi}
create a new task ti′ denoting ui. Set dti′ = max due;

pii′ = Delay(ui); pji′ = ∞ for j = i

For each BD constraint c = BD(As), do

Create a new task a′; dur(a′) =
∑

a∈As
dur(a);

UserAready(a′) =
⋂

a∈As
UserAready(a);

If UserAready(a′) = ∅ Then return False;

For each ME(Bs) constraint

If As ∩ Bs = ∅, Then replace ME(Bs) with

MRE((Bs − As ∩ Bs) ∪ {a′})
DA = (DA − As) ∪ {a′};

For each task aj ∈ DA, do

Set dj = max due.

For each Mi ∈ M

If ui ∈ UserAready(aj) then set pij = dur(aj);

otherwise set pij = ∞.

For each ME(As) constraint, do

For each task aj ∈ As do dj = due(aj).

Fig. 1. The reduction of QTAP to the scheduling prob-

lem under the given DA, ContextUDA, and

〈U, R, RH, UR, A, C, DURA〉
new task ti′ . Let dti′ = max due; pii′ = Delay(ui); and pji′ = ∞
for j = i (∞ can be a very larger integer than the task duration and

user delay). This denotes the special task ti′ can be performed only

on Mi. For each task aj ∈ DA, if user ui is qualified for it, namely
ui ∈ UserAready(aj), we set the processing time of tj on the cor-

responding user machine Mi is pij = dur(tj); otherwise pij = ∞.
This ensures that a task being allowed to perform only by qualified

users. Let dj = max due.

(3) Handling of security constraints Since we have dis-

cussed the constraint consistency in last section, here we assume
there is no conflict existing in the constraint set C. For each bind-

ing of duty constraint BD(As), we check the candidate user sets

for all tasks in As. If there is no intersection among them, namely⋂
a∈As

UserAready(a) = ∅, it is unfeasible to make a task assign-

ment solution for DA without violating this BD constant since the
binding constraint requires these tasks to be always performed by

the same user. In this case, we return answer False. Otherwise,

when the intersection set is not empty, we generate a new task say a′
to replace all the tasks in As, and set its duration to the sum of task

duration in As as these tasks only can be performed one by one se-
quentially. Formally, dur(a′) =

∑
ai∈As

dur(ai). At the same time,

we replace every occurrence of each task ai ∈ As in other ME con-

straint with a′. For example, if there is a constraint BD({a1 , a2}),
the qualified users for a1 and a2 are UserAready(a1) = {u1, u2, u3}
and UserAready(a2) = {u4, u2, u3}, we would create a new task
a′ and set the intersection set {u2, u3} as its candidate users, as

well as dur(a′) = dur(a1) + dur(a2). If there is also a constraint

ME(a1, a3), it would be replaced by ME(a′, a3).

For each ME(As), we need to ensure each task a ∈ As being
assigned to a different machine in the scheduling problem. The pro-

cessing time of these tasks should be assigned overlapped such that

a candidate machine can only process one of them at the same time.
So, for each task aj ∈ As, we specify the due date dj = dur(aj)

such that any two of them cannot be processed by the same ma-
chine. Since the tasks involved in any two ME constraints are dif-

ferent, above proposal guarantees that the ME constraint always

satisfiable.

Obviously, this reduction can be processed with the polynomial
time complexity O(|DA| ∗ |U | + Max2

As
), where |U | and |DA| are

the size of the available user set and the size of DA. MaxAs is

the max set size |As| of ME(As) and BD(As) constraints, namely
MaxAs = MaxME(As),BD(As)∈C{|As|}. In general, if an optimal

solution is found for the scheduling problem, we construct the op-

timal task assignment for QTAP in the following way: if task tj is
arranged to machine Mi, we put (ui, aj) into the resulting Quick-

response solution.

V. QTAP Extension

In this section, we present a useful extension to the Quick-
response task allocation problem. As we have mentioned in Section

IV, the emergency process is defined as a dynamically customized
set of tasks without associated specific relationships. However, in

practice, there may exist dependency relationships between tasks,

such as sequential, parallel, or elective. To capture this, we extend
our definition to introduce the partial order relationship on DA, de-

noted as BP = 〈DA, �〉, where � ⊆ DA × DA, which is widely
adopted in the domain of business process management. The nota-

tion ai �aj , where ai, aj ∈ DA, means task ai should be performed

before aj . ai is called the previous task of aj , while aj is called the
subsequent task of ai. The common assumption under this defini-

tion is that there exists no circle in 〈DA, �〉, i.e., relationships like
a1 � a2, a2 � a3, and a3 � a1 do not coexist. Previous work has

discussed multiple methods to check and remove a circle, such as

Refs.[7, 11].

An illustrative example is shown in Fig.3, which is the ex-
tension of Example 1 with the dependency relationships be-

tween tasks, where DA = {a1, a2, a3, a4, a5} and � =
{(a1, a2), (a1, a3), (a2, a4), (a3, a4), (a4, a5)}. The security con-

straints are C = {ME(a2, a3), ME(a4, a5), BD(a1, a4)}. In Fig.3,

the integers in the squares associated with each task are the task
duration, such as a1 requiring 20 minutes. The available qualified

users for each task, namely UserAready(a), are given in the brack-
ets beside the task and are associated with user delay. For example,

(Alice, 30) beside three tasks a1, a2 and a4 denotes Alice is qualified

for these tasks and 30 minutes is required for her to be present.

Now, we discuss how the extension may affect the results pre-
sented in the previous section. It is easy to see that the problem

QTAP remains NP-hard since it is at least as hard as the case with-
out dependencies between tasks. Although the solution in to QTAP

presented in the last section can support the preemption relation-

ships between tasks, it is difficult to express the elective require-
ments. So in this section, we present a different way to solve the

QTAP extension problem.

1. Heuristic algorithm

The proposed algorithm for the extension of QTAP is an ant

colony optimization algorithm. Please refer to Fig.2. In the pre-
process, we introduce a new predicate Pre act(a) to enumerate

all directly previous tasks of each task a, and define two variables
URAopt and URA to record the current optimal solution for QTAP

and the temporarily generated feasible solution. We also perform

the heuristics on BD(As) constraints by setting the set of available
candidate users for a ∈ As to the intersection of their available user

sets.

In the process of generating an optimal solution, we introduce
another heuristic for reducing the computation, to verify the elapsed

time of fulling any task being worse than the optimal. The pred-

icates pre time(a) and elapse time(a) are respectively denote the
elapsed time of fulfilling a’s previous tasks and the elapsed time of

finishing a after the whole process started. We first randomly se-
lect a candidate solution URA (i.e. user-task allocation) satisfying

all security constraints to perform the tasks in DA and record the

elapsed time in a temporal optimum Copt, as well as the assignment
solution URAopt. Then, we enumerate all candidate solutions one

by one and see whether it is better than Copt. As soon as we find
the elapsed time for fulfilling any task a in DA is larger than the

400 Chinese Journal of Electronics 2012

temporal optimum Copt, namely elapse time(a) > Copt, we discard

it immediately. Otherwise, Copt and URAopt are updated when we
have a better solution, as shown in step 6.

To calculate the elapsed time of DA under each URA, we

start from the tasks with no previous task, namely Pre act(a) =
∅. For each such task a and its available performer u, we have

pre time(a) = 0 and elapse time(a) = dur(a) + delay(u). Then

we consider the tasks whose previous tasks having been processed,
namely mark(a) = 1. For any such task a, while its previous

task being executed, the performer of a is on his way to the event.

This implies there is overlap between the user delay time delay(u)
and the elapsed time of fulfilling its previous tasks pre time(a). If

pre time(a) > delay(u), then u is already at the event when the
previous tasks end. We do not need to take the performer’s delay

into account, and therefore elapse time(a) = pre time(a) + dur(a).

Otherwise, elapse time(a) = dur(a) + delay(u). When there are
multiple tasks directly previous to a, namely |Pre act(a)| > 1, ei-

ther being performed in parallel or electively, the elapsed time of
fulfilling them should be: pre time(a) = max{elapsed time(a′)|a′ ∈
Pre act(a)}.

Considering the example from Fig.3, we list all the attempted

solutions in Table 2. The evolution of URAopt includes s1, s2, and
s4. From these results, we can see that many candidate solutions

are discarded before we complete the calculation, since we found
them resulting a worse elapsed time than the current optimal one.

Overall, the computational complexity of our algorithm in Fig.2

is O(|DA| ∗ Nmax + |DA|Nmax), where Nmax is the maximum size

Pre-process:

URA = ∅; Copt = ∞; URAopt = ∅
For each task a in DA, do

UserAready(a) = {u ∈ UserA(a) ∧ u.state = ready};
If UserAready(a) = ∅ return False;

Compute the directly previous tasks of a:

Pre act(a) = {a′|a′ � a ∧ a′ ∈ DA};
For each BD constraint c = BD(As), do

tmp set = ∩ai∈AsUserAready(ai);

For each ai ∈ As

UserAready(ai) = tmp set;

Generate an optimal solution:

Loop: Do

1. For each task a ∈ DA do

mark(a) = 0; elapsed time(a) = 0; pre time(a) = 0;

2. Generate a candidate user-task allocation for DA by

enumeration, i.e. URA = {(u, a)|a ∈ DA ∧ u ∈
UserAready(a)}
3. If URA does not satisfy all security constraints then goto

step 2 for next candidate

4. For each (u, a) ∈ URA ∧ (Pre act(a) = ∅ ∨ (∀a′ ∈
Pre act(a) ∧ mark(a′) = 1)) do

pre time(a) = max{elapsed time(a′)|a′ ∈ Pre act(a)};
mark(a) = 1;

If pre time(a) >= delay(u)

then elapsed time(a) = pre time(a) + dur(a);

else elapsed time(a) = delay(u) + dur(a);

If elapsed time(a) > Copt

Then goto loop

5. elapsed time(DA) = max{elapsed time(a)|a ∈ DA}
6. If elapsed time(DA) < Copt then Copt =

elapsed time(DA); URAopt = URA;

End Loop: Until all possible user-task combination have

been enumerated

Fig. 2. The heuristic algorithm to the QTAP ex-
tension problem under the given 〈DA, �〉,
〈U, R, RH, UR, A, C, DURA〉, and ContextUDA

of the available qualified user set for each task. Formally, Nmax =

max{|UserAready(a)|, a ∈ DA}. Although it is still in exponential
complexity, in practice the adoption of above heuristics can greatly

reduce the attempts of computing the possible task allocation solu-

tions and thus increase the rate of success. We would also mention
that this algorithm can definitely solve the ordinary QTAP prob-

lem without dependencies. In that case, the predicate Pre act(a) is
empty for each task a indicating that a has no previous task. And

the whole process of solving QTAP just enumerates all possible user

task solutions and find the optimum.

Fig. 3. An example of a business process

Table 2. The elapsed time under different task

allocation solutions

Solution Authorization activation solution Elapsed

ID a1, a2, a3, a4, a5 time

s1 Alice,Alice,Caro, Alice, Bob 165

s2 Alice,Alice, Caro, Alice,Dan 145

s3 Alice,Alice, Dan, Alice, Bob discarded

s4 Alice, Alice,Dan, Alice, Dan 135

s5 Alice,Caro, Dan, Alice, Bob discarded

s6 Alice,Alice, Caro, Alice,Dan discarded

s7 Bob, Alice, Caro, Bob, Dan discarded

s8 Bob, Alice,Dan, Bob, Dan discarded

s9 Bob, Caro, Dan, Bob, Dan discarded

2. Experiments

We performed some experiments to verify the efficiency of our

algorithm by comparing it with the non heuristic approach. The en-
vironment is a personal computer with a dual-core Intel Core 2 Duo

E6550 2.33GHz CPU and 1GB RAM, running on the Windows XP
SP3 operating system. We programed the prototype with Visual

Studio 2008 SP1, MySQL 5.1 and C++.

We generated a set of test cases for our experiments, in which

the parameters were chosen to be close to practical cases. In par-

ticular, both the number of tasks involved in DA and the number
of security constraints should not be very large. However, the delay

for users’ attendance may quite different. The number of tasks in-
volved in DA ranges from 3 to 20, the number of security constraints

ranges from 3 to 6, and the number of candidate users for each task

ranges from 3 to 10. The users’ delay and task durations vary from
10 to 100 (mins).

We evaluate the impact of the heuristics to reduce the compu-
tation complexity. Specifically, we have considered four different

test cases: (1) the number of tasks varies from 3 to 10; (2) the max
number of potential users for each task varies from 1 to 5; (3) the

number of potential user-task assignment combinations varies from

50 to 300; and (4) the number of security constraints varies from
1 to 6. The experimental results are reported in Fig.4. For each

aspect, we measured the execution time (in milliseconds) of the two
algorithms. Moreover, for each case we have executed more than ten

trails and calculated the average response time. From the results,

we can see that the heuristic algorithm greatly reduces the execution
time than the non-heuristic algorithm. Specially in Fig.4(d), the re-

sponse time of the heuristic algorithm decreases when the number
of security constraints increases. It is easy to understand that for

Context-Aware Task Allocation for Quick Collaborative Responses 401

Fig. 4. Non-heuristic approach vs. heuristic approach. (a)

First test case; (b) Second test case; (c) Third test
case; (d) Fourth test case

the same system configuration, the more security constraints are
given, the more candidate performers for each task are restricted

and discarded. For example, originally {Alice, Bob} are candidates
for task a1, while {Alice, Carly} are candidates for a2. If a con-

straint BD(a1, a2) is added, then only Alice is the eligible candidate

for these tasks. Our algorithm makes a prior check, which markedly
reduces the computation.

VI. System Implementation and
Discussion

In our preliminary work[2], we have proposed a system archi-
tecture by extending a BPEL4People engine with an access control

architecture for human tasks. Here we refine this architecture and

present some implementation details on important parts. We im-
plement our prototype on a PC with operating system WINDOWS

XP SP2, a 2Gz E5200 processor and 2GB RAM. It is based on
the BPEL engine ActiveVos 7.1.2 and a MySQL 5.0 database. The

key step is the dynamic binding of users and tasks, i.e. appointing

which user performs each task via which role. In general, for each
task of a business process it is required to appoint the performer

before the whole process execution. However, in our model the op-
timal user task assignment solution is generated at runtime. So we

designed a Web service that generates the optimal solution accord-

ing to our algorithms. We also use the Identity service in ActiveVos
to retrieve the solution and select task performers according to it.

The clients for the users are implemented as Android applications.
Specific classes of the Android SDK provide means to retrieve the

user’s location. The position is denoted by spatial coordinates and

is represented as a single point in the Cartesian coordinate. It is
then associated with a certain place in the real world. Currently,

a user delay is calculated only according to the distance between
the user and an event site. More sophisticated context can be sim-

ulated if desired. For user notification, we implement two methods.

By configuring the parameters of POP3 and SMTP in the mail box
of ActiveVos, we can use emails for user notification. We also inte-

grated short message notification for mobile clients.

There are quite a few merits of our solution on the quick collab-
orative response. Firstly, our method supports portable intelligent

equipments, like intelligent mobile phone or PDA and it is suitable
to emergent situation. Since in an urgent event, the event location

and required tasks are unknown in advance and we could not ar-

range well all qualified user at the site. Our method integrates the
location position technologies and coordinates appropriate users to

be there and fulfill the tasks in the fatest manner. Secondly, our

model and algorithm can be integrated into a practical business
process application since many modern open-source BPEL engines

like ActiveBPEL already support human tasks as described in the
BPEL4People specification. We also have prototyped a system in-

tegrating a business process management system. Another merit

of our solution is the integration of the RBAC model since it is
widely adopted in practical systems and supports flexible autho-

rization management.

VII. Conclusions

Under emergency situations, quick response is urgently required

for persons to arrive at the scene to perform sensitive processes

without compromising security policies, where the required tasks
may be dynamically customized and the performers are unknown

in advance. In this paper, we study the Quick-response task al-
location problem (QTAP) to find a task-user allocation solution

with consideration of context and security constraints. We study

the computational complexity of QTAP and propose an algorithm
to select the qualified users for fulfilling the tasks in the fastest

manner, while satisfying security constraints. We also discuss an
extension of QTAP with the consideration of the dependency rela-

tionships between tasks and present a heuristic algorithms to solve

this problems. Our experiments have demonstrated the effectiveness
and efficiency of these heuristics.

References

[1] N. Li, M.V. Tripunitara, Z. Bizri, “On mutually exclusive roles
and separation of duty”, ACM Transaction on Information and

System Security, Vol.35, No.2, pp.1094–9224, 2007.

[2] Y. Sun, M. Farwick and D.K. Chiu, “Constraint-based autho-
rization management for mobile collaboration”, in Proceeding of

2009 IEEE Congress on Services, Los Angeles, USA, pp.22-29,

2009.

[3] Z. UYao, B. Li and S. Liu, “Role based collaboration authoriz-
ing by using ontology”, Chinese Journal of Electronics, Vol.20,

No.3, pp.389–394, 2011.

[4] Y. Sun, B. Gong, X. Meng, Z. Lin and E. Bertino, “Specification
and enforcement of flexible security policy for active coopera-

tion”, Elsevier Information Sciences, Vol.179, No.15, pp.2629–
2642, 2009.

[5] D. Hong, D. Chiu, S. Cheng, V. Shen and E. Kafeza, “Ubiq-

uitous enterprise service adaptations based on contextual user
behavior”, Information Systems Frontier, Vol.9, No.4, pp.36–

44, 2007.

[6] Y. Sun, Q. Wang, N. Li, E. Bertino, M. Atallah, “ on the com-
plexity of authorization in rbac under qualification and secu-

rity constraints”, IEEE Transaction on Dependable and Secure

Computing, Vol.8, No.6, pp.883–897, 2011.

[7] Y. Sun, J.Z. Huang, X. Meng, “Integrating constraints to sup-

port legally flexible business processes”, Springer Information

Systems Frontiers, Vol.13, pp.171–183, 2011.

[8] F. Paci, E. Bertino, J. Crampton, “An access-control framework
for ws-bpel”, International Journal of Web Service Research,

Vol.5, No.3, pp.20–43, 2008.

[9] F. Paci, R. Ferrini, Y. Sun, E. Bertino, “Authorization and user
failure resiliency for ws-bpel business processes”, in Proceedings

of the 6th International Confrence on Service Oriented Com-
puting, Sydney, Australia, pp.116–131, 2008.

[10] J. Mending, K. Ploesser, M. Strembeck, “Specifying separa-

tion of duty constraints in bpel4people processes”, in Proceeding
of the 11th International Conference on Business Information

402 Chinese Journal of Electronics 2012

Systems, Innsbruck, Austriaa, pp.273–284, 2008.

[11] Q. Wang, N. Li, “Satisfiability and resiliency in workflow sys-
tems”, in Proceeding of the European Symposium on Research

in Computer Security (ESORICS), Dresden, Germany, pp.90–

105, 2007.
[12] C.A. Ardagna, M. Cremonini, E. Damiani, S.D.C. di Vimer-

cati, P. Samarati, “Supporting location-based conditions in ac-
cess control policies”, in Proceeding of the ACM Symposium on

Information, Computer and Communications Security Table of

Contents, New York, USA, pp.212–222, 2006.
[13] I. Ray, M. Kumar, “Towards a location-based mandatory access

control model”, Computers and Security, Vol.25, No.1, pp.343–
358, 2006.

[14] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, “Role-

based access control models”, Computer, Vol.29, No.2, pp.38–
47, 1996.

[15] I. Ray, M. Toahchoodee, “Aspatio-temporal role-based access
control model”, in Proceedings of the 21th Annual IFIP WG

11.3 Working Conference on Data and Apptications Security,

Berlin, Gemany, pp.211-226, 2007.
[16] M.L. Damiani, E. Bertino, B. Catania, P. Perlasca, “Geo-rbac:

A spatially aware rbac”, ACM Transaction on Information Sys-
tem Security, Vol.10, No.1, pp.1–42, 2007.

[17] Y. Sun, D.K. Chiu, “Conyext-aware scheduling of workforce for

multiple urgent events”, in The Fourteenth Interational Con-
ference on Computer Supported Cooperative Work in Design

(CSCWD 2010), Shanghai, China, pp.629–634, 2010.
[18] Y. Sun, D.K. Chiu, B. Gong, X. Meng, P. Zhang, “Schedul-

ing mobile collaborating workforce for multiple urgent events”,

Journal of Network and Computer Applications (JNCA), 2011.
[19] N. Marsit, A. Hameurlain, Z. Mammeri, F. Morvan, “Query pro-

cessing in mobile environments: a survey and open problems”,
in Proc. of the First International Conference on Distributed

Framework for Multimedia Apptications (DFMA-05), Besanon,

France, pp.150–157, 2005.
[20] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems

(3rd edition), Heidelberg, Germany: Springer, 2008.

SUN Yuqing received B.S., M.S.

and Ph.D. degrees in Computer Science
from Shandong University, China. She is

currently a professor in the School of Com-

puter Science and Technology at Shandong
University. Her research interests include

system security and privacy, social net-
work, Web services, and business comput-

ing. (Email: sun yuqing@sdu.edu.cn)

Matthias Farwick received M.S.

degree in Computer Science from the Uni-

versity of Innsbruck, Austria, in 2010. He
has worked in several research projects in

the area of model-driven security configura-
tion and access control in the Austria, Ger-

many, China, Canada and USA. Currently,

he pursues Ph.D. studies at the Univer-
sity of Innsbruck in the area of automated

enterprise architecture model maintenance
and works as a consultant in the field of IT-Landscape management

for QE-LaB Business Services.

Patrick C.K. Hung is an Associate

Professor at the Faculty of Business and In-

formation Technology in University of On-
tario Institute of Technology in Canada

and an Adjunct Professor at the State
Key Laboratory of Software Engineering in

Wuhan University in China. He is also a

Guest Professor at Institute of Computer
Science in University of Innsbruck, Austria.

He is a founding member of the IEEE In-
ternational Conference of Web Services (ICWS) and IEEE Interna-

tional Conference on Services Computing (SCC). He is an associate

editor of the IEEE Transactions on Services Computing, Interna-
tional Journal of Web Services Research and International Journal

of Business Process and Integration Management.

Dickson K.W. Chiu received the M.S. degree in 1994 and

the Ph.D. degree in Computer Science from the Hong Kong Univer-
sity of Science and Technology in 2000. He started his own com-

puter company while studying part-time. He has been teaching at

several universities in Hong Kong. His research interest is in ser-
vice computing. The results have been widely published in over 150

papers in international journals and conference proceedings. He is
the founding Editor-in-chief of the International Journal on Sys-

tems and Service-Oriented Engineering and serves in the editorial

boards of several international journals. He co-founded several in-
ternational workshops and co-edited several journal special issues.

He also served as a program committee member for over 70 interna-
tional conferences and workshops. He is a Senior Member of both

the ACM and the IEEE, and a life member of the Hong Kong Com-

puter Society.

JI Guangjun received B.S. degree in Computer Science from

Jinan University in 2008 and M.S. degree in Computer Science from
Shandong University in 2011. Now he works in the Research Insti-

tute of the State Grid Electric Power, which is affiliated to the State

Grid Corporation of China (SGCC).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

