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Abstract—Personal Health Record (PHR) systems store a 
large amount of users’ health information, which is very sensitive 
for users. So privacy protection is an important issue for PHR 
systems. Although information technology audit can find out 
improper accesses to users’ sensitive data that violate their 
privacy policies, it is difficult for inexperienced users to use audit 
commands. This paper presents an audit recommendation 
framework to help users appropriately audit their sensitive 
records so as to have a good understanding of their privacy 
situation. For an audit requester, we analyze doctors’ historical 
queries to find the similar users of the requester. Then we 
analyze the audit commands of those similar users and make 
some recommendations to the requester. Experiments are 
performed to verify our method. 

Keywords—audit; recommendation; personal health record 
systems 

I. INTRODUCTIONON 
Personal Health Record systems are user-centered 

electronic medical systems which store users’ personal health 
information, such as Microsoft HealthVault and Google 
Health [1]. The information in these systems includes medical 
diagnoses, clinical symptoms, medication records, insurance 
information and other data from medical devices such as 
wireless electronic weight scales. It is convenient for users 
and doctors to communicate with each other. Users can check 
and share their health information. Doctors can know well 
about the users’ health situations so as to make better 
treatment options. Since PHR systems store a large amount of 
users’ sensitive information, privacy protection is essential. 
Some PHR systems allow users to set their own privacy 
policies [2]. However, users may not know how to set the 
privacy policies without affecting doctors’ diagnostic. Users 
may worry about their health privacy if the policies are too 
loose. But setting too strict policies may affect the treatment 
in some emergency circumstances. In this case, general users 
often assign more access rights to their doctors so as not to 
affect the diagnostic. 

However, assigning much too access rights to doctors may 
lead privacy disclosure. In order to solve this problem, audit 
technology is adopted to help users to check their privacy 
situation. The advantage of audit is that users can discover and 
track inappropriate queries and those related doctors. So audit 
mechanism can constrain doctors’ behavior to some extent. 
Hence, users can assign more access rights to doctors to allow 

all necessary accesses. Some of current PHR systems provide 
audit function for users, such as HealthVault allows users to 
view the audit trails in their HealthVault account at any time. 
But the audit function proposed by HealthVault is simple that 
users can’t specify flexible audit goals. It is difficult for users 
to find the privacy disclosure in a large number of log entries. 
So providing more flexible and efficient audit functions for 
users is necessary. However, those inexperienced users don’t 
know how to audit efficiently, especially in big data and 
complex access cases. For example, a user who has a heart 
disease doesn’t want others to know the fact. He may want to 
know whether some uncorrelated persons have viewed his 
heart disease related records. But he doesn’t know how to do 
an audit to achieve this goal. So audit recommendations are 
necessary to help him to appropriately audit his records of 
heart disease. 

This paper proposes an audit recommendation framework 
to solve this problem. The purpose of the framework is to 
recommend appropriate incomplete audit commands to those 
inexperienced users, help the users appropriately audit their 
sensitive records so as to have a good understanding of their 
privacy situation. The incomplete audit commands here 
specify the audit commands that ignore the unimportant fields. 
For an audit requested user, we first find users who have 
similar diseases with the requester by analyzing doctors’ 
historical queries. Then we analyze the audit commands that 
have been submitted by the similar users and obtain the 
related incomplete audit commands. At last, we calculate the 
recommendation priority of those incomplete audit commends 
and recommend several ones with high priority to the audit 
requester. 

II. RELATED WORK 

A. Query Auditing 
The Health Insurance Portability and Accountability Act 

(HIPAA) released by United States demands that users have 
rights to know when and by whom their health information is 
viewed. Query auditing is a security mechanism to conform 
this rule. In order to implement query auditing, database keeps 
query logs which record all queries and other related 
information. For a given query log, query auditing analyzes 
the queries in the log to determine whether some legal queries 
have acquired users’ sensitive information. Auditors can make 
further analysis on the basis of auditing results to find out the 
persons who have disclose the sensitive information. An audit 
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framework for electronic medical record (EMR) systems has 
been presented in [3] depending on the security rule of HIPAA. 
If a patient’s privacy leaked after treating in a hospital, the 
auditor of the hospital can find out the suspects who may have 
disclosed the user’s privacy. The audit framework presents an 
audit expression which is close to a SQL statement:  

AUDIT audit list FROM table list WHERE condition list. 

where audit list is a list of privacy attributes, table list is a list 
of tables of the attributes in audit list and condition list is a list 
of conditions that describe the target patients of the audit. 
Literature [4] proposes an audit method which can analyze 
any complex SQL statements. The audit method presented in 
[5] can detect privacy disclosures caused by the combining of 
multiple SQL queries. Literature [6] presents an audit method 
under the environment of XML data query. Literature [7] 
discusses the audit method after setting wrong access control 
policies. Literature [8] presents an audit method under the 
security rule of data retention. The existing literatures have 
discussed audit methods in different ways. The methods are 
mainly applicable to EMR systems in which the audit 
functions are provided to professional auditors. Although the 
existing audit methods can be applied to PHR systems, they 
are not appropriate for those inexperienced users. So we 
present an audit recommendation framework to help users to 
appropriately audit their health privacy in PHR systems. 

B. Recommender Systems 
This paper is also related to recommender systems. 

Recommender systems produce a list of items for users of 
their interests, which are widely used in areas such as 
electronic commerce and social network. There are four kinds 
of implementation approaches of recommender systems [9]: 
content-based filtering, collaborative filtering, social network 
based filtering and network structure based filtering. 
Collaborative filtering methods are widely used in 
recommender systems. The idea of collaborative filtering is 
that if two users have similar evaluations to some certain 
items, they are similar users who share similar interests, so the 
evaluations of them on other items should also be similar. This 
paper adopts this idea, that is, if doctors have visited two 
users’ health indicators in similar ways, the two users may 
have same diseases, so they may concern same health privacy 
and have same audit requirements. But the existing 
recommendation approaches can’t be applied directly to PHR 
systems because the methods of finding similar users in PHR 
environments are different with those in traditional 
recommender environments. In this paper, we calculate the 
similarity between two users through doctors’ historical 
queries, which is different to the similarity calculation 
methods in recommender systems. 

III. AUDIT RECOMMENDATION FRAMEWORK 

A. Concepts and Notions 
In a PHR system, we call a person user who uses the 

system to store and manage his health information and call a 
person doctor who accesses users’ health information for 
treatment purposes. Let U and D be the set of all users and 
all doctors in a PHR system, respectively, |U| and |D| 

represent the number of elements in these two sets. 

Definition 1(Health indicator):A health indicator is one 
of the items of clinical results, physical test results and 
medication records, such as cholesterol, blood pressure, blood 
type, and so on. Let O be the set of all health indicators. 

Definition 2(access transaction): An access transaction 
records a data access in a PHR system. Each access 
transaction is denoted as a tuple of the form <doctor, user, 
objects, time>, where doctor D, user U and objects O. 

For example, an access transaction of <Bob, Alice, 
{cholesterol, blood pressure}, 2012/01/01> specifies that a 
doctor Bob has accessed a user Alice’s health indicators of 
cholesterol and blood pressure on the day of 2012/01/01.  

Definition 3(accessed matrix): An accessed matrix 
describes access behaviors of doctors. Each user has an 
accessed matrix and we obtain a total accessed matrix through 
all users’ accessed matrixes. 

 For a user uk U(1 k |U|), his accessed matrix Bk 
describes the accessed situation of his health indicators by 
doctors, the size of Bk is |Dk|×|O| where |Dk| denotes the 
number of doctors who have accessed uk. Bk(i, j)=1 if di Dk
has accessed uk, and 0 otherwise. 

The total accessed matrix B describes the accessed 
situation of all users, the size of B is |U|×|O|, we call each row 
of B as a accessed vector, B(i, j) is the number of doctors who 
have accessed ui’s health indicator oj. 

Definition 4(similar user): For a user, his similar users 
are those who have similar diseases with him. We calculate 
the similarity between users through their accessed matrixes. 

Definition 5(audit command): An audit command is 
submitted by a user to audit the security situation of his 
sensitive information. Each audit command is denoted as a 
tuple of the form < audit_user, time1, time2, objects >, where 
audit_user U and objects O, specifies that a user audit_user 
audits the security situation of his health indicators in objects. 

For example, an audit command of <Alice 2012/01/01
2012/01/10 {cholesterol}> specifies that Alice submits an 
audit command to audit the security situation about her 
cholesterol during 2012/01/01 to 2012/01/10. 

B. The Audit Recommendation Framework 
As shown in Figure 1, the audit recommendation 

framework consists of two parts: similar users finding and 
audit recommendation. In the first part, we find out similar 
users of an audit requester. For each disease, there is a set of 
health indicators related to it, doctors who treat the disease for 
users would focus on the users’ health indicators of the set. If 
two users have a same disease, doctors would focus on the 
same set of their health indicators. So we compute two users’ 
similarity through the accessed situation of their health 
indicators by doctors. We use a weight vector of health 
indicators during the similarity calculation so as to acquire 
more accuracy results. In the second part, we first abstract the  
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Fig. 1. An overview of the Audit Recommendation Framework. 

audit commands that submitted by the similar users. Then we 
acquire some related incomplete audit commands and 
calculate their recommendation priority. At last, we 
recommend several incomplete audit commands with high 
priority to the audit requester. 

IV. SIMILAR USERS FINDING 
PHR systems record users’ illness history, but they may be 

more concerned about the diseases that they have in recent 
time. For an audit requested user, we first set a time window 
[recentBegin, currentTime] which specifies a recently period 
of time during which the user has a sick. To get the 
recentBegin time, we select a time threshold and divide the 
access transactions that related to the user into groups. The 
time interval between any two records in each group is less 
than the time threshold. The recentBegin is the time of the 
earliest record in the recent group and the currentTime is 
current time. The time window can also be set by the audit 
requester. Let U, D and T, respectively, denote the set of 
related users, doctors and access transactions within the 
window [recentBegin, currentTime]. 

A. Create the Accessed Matrix 
For a user uk U, we extract a subset Tk from T and let the 

second term of the access transactions in Tk is uk. Then we 
construct uk’s accessed matrix Bk and the size of Bk is |Dk| |O|, 
where Dk is the set of doctors who have accessed uk. Each row 
in Bk represents a doctor’s access situation on uk’s health 
indicators. We only consider once even if a doctor accessed a 
health indicator for many times. We construct a total accessed 
matrix B by all users’ accessed matrixes, the size of B is 
|U|×|O|, each row in B represents a user’s accessed situation 
by doctors. We obtain the matrix B as follows  

1
( , ) ( , )

kD

k
i

B k j B i j
=

=
             

(1)
 

B. Weight Vector of Health Indicators 
Different health indicators should have different weights 

when calculating the similarity between users. We use w to 
represent a weight vector which marks the weights of all 
health indicators. The weight vector w can be used to adjust 
the influence of each health indicator during the similarity 

calculation. If there is a health indicator that has been 
accessed by doctors for most users, the health indicator may 
not be sensitive and should be assigned a smaller weight. But 
if the health indicator has been accessed by doctors for only a 
few users, it may be a special one and should be assigned a 
bigger weight. The weight of each health indicator oj O in w 
can be computed as follows:  

1

1
( ( , ))

j U

i

w
isAccessed B i j

=

=

       

(2)

 
where for each health indicator oj, we calculate the number of 
users whose oj have been accessed by doctors. Then take the 
reciprocal of the number as the weight of the health indicator 
oj. If the result of denominator equals 0, the result of wj is 0. 
The function in (2) is as follows: 

{ ( ( , ) 0)0( ( , ))
1

if B i jisAccessed B i j else
==   

    
(3)

 
C. Similarity Calculation 

For an audit requested user ui, we calculate the similarity 
between ui and other users. We get a revised accessed matrix 
M in which we consider the influence of different health 
indicators. The matrix M is constructed through the accessed 
matrix B and the weight vector w: 

( , ) ( , ) jM i j B i j w= ×
             

(4) 

We use cosine similarity formula to calculate the similarity 
between ui and uj 

[12]:  

         ( , )
( )( )i jsim u u =

T
i j

T T
i i j j

M M
M M M M

    

  (5) 

where Mi and Mj, respectively, denote the i-th row vector and 
the j-th row vector in matrix M. We specify a threshold r, the 
user whose similarity with ui is bigger than r is a similar user 
of ui. 
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V. AUDIT RECOMMENDATION 
As the time fields in an audit command have so many 

possible selections, we ignore them when making a 
recommendation. An audit command is called as an 
incomplete audit command if we ignore its time fields and the 
first term. Such as <{cholesterol}> is an incomplete audit 
command related to an audit command of < Alice 2012/01/01, 
2012/01/10 {cholesterol} >. For an audit requested user, we 
first extract and find appropriate incomplete audit commands 
from the audit histories of his similar users’, then recommend 
them to the requester to help him set appropriate audit 
commands. 

Assume that we are recommending audit commands to ui. 
Let vk Si(1 k |Si|) be a user in Si, where Si is the set of ui’s 
similar users. Let Ak be a set of audit commands that 
submitted by vk within the window [recentBegin, currentTime]. 
Then the set of all audit commands of ui’s similar users can be 
expressed as A=A1+A2+A3+…+A|Si|. Then we partition A into 
subsets as A=A1’+ A2’+ A3’+…Ap’, where in Aj’ there exist 
only one kind of audit commands that have same objects. Let 
aj’ be the incomplete audit command related to the audit 
commands in Aj’. So the total number of incomplete audit 
commands related to A is p. Then we construct a matrix C 
with a size of |Si|×p, where C(k,j) represents the number of 
audit commands that related to aj’ and submitted by vk. As 
everyone’s audit habits may be different, so we deal with the 
matrix C to obtain a revised matrix C* as follows: 

*

1

( , )( , )
( , )p

j

C k jC k j
C k j

=

=

              

(6)

 
where the denominator represents the total number of audit 
commands that have been submitted by vk. Each row in C* can 
be understood as a similar user’s interesting degrees to all the 
incomplete audit commands. We calculate the 
recommendation priority of every incomplete audit commands 
for ui as follows: 

*

,

( ( , ) ( ( ), ))

( , )
i

i

iu S
i j

iu S

sim u u C getRowNum u j
P

sim u u
∈

∈

×
=

   

(7) 

where the function getRowNum(u) returns the row number of 
u in matrix C*. The main idea to calculate Pi,j is that sum all 
the similar users’ interesting degrees on aj’ and also consider 
the similarity during the calculation. The greater the final 
result of Pi,j is, the more attention on aj’ would be paid by ui. 
Then, we recommend several incomplete audit commands 
with high priority to ui. 

VI. EXPERIMENTS 
We perform experiments on a set of simulated data to 

verify our methods. In order to verify the correctness of the 
similar users finding part of our framework, we perform 4 
experiments where we select four typical users and calculate 
their similarity with other users. The results are expressed in 
Figure 2 to Figure 5. Then we verify the correctness of the 
audit recommendation part of our framework according to the 
similarity calculation results of Figure 2 to Figure 5 and the 

accuracy calculation results of recommendation are expressed 
in Figure 6. 

According to the diseases introduction on a professional 
medical website we find 28 diseases and their related 
indicators. Then we construct 141 users and randomly assign 
1-2 diseases to each user. We predicate the accessed situation 
of those 141 users depending on the diseases that assigned to 
them. As doctors tend to cooperate with each other when they 
work and the optimal number of cooperation is 6 [10, 11]. So for 
a user and one of his diseases, we use a random number 
between 5 and 7 to denote the number of doctors who have 
accessed his health indicators that related to the disease. We 
first construct an original accessed matrix by the 141 users 
and their diseases. Then we obtain a revised accessed matrix 
by a weight vector and the original accessed matrix. We use 
these two matrixes to calculate the similarity between users in 
the following experiments. We call the calculation method as 
accessed-matrix based method (ABM) when using the 
original accessed matrix and revised accessed-matrix based 
method (RABM) when using the revised accessed matrix 
during the similarity calculation.  

We select four typical diseases: AIDS, diabetes, pneumonia 
and flu to perform experiments, where AIDS stands for 
special diseases, diabetes and pneumonia stand for serious 
diseases and flu stands for common diseases. Then we select 
four users from the 141 users and each one of the four users 
has one or two diseases of the four diseases. We use both 
ABM and RABM to get the four users’ similar users. We 
found that the similarity calculation results are more conform 
to our actual expectations when using RABM. In the 
following several figures, each figure represents the similarity 
calculation results of one of the four users with other users. 
The dotted lines represent the similarity between the user and 
other users when using ABM, the solid lines represent the 
results when using RABM. Here we say two users are similar 
users if their similarity is bigger than 0.8. 

 
Fig. 2. Similarities of a user who have AIDS with other users 

AIDS is a special disease and the number of users who 
have AIDS is so small, but it is a very sensitive privacy for 
those users. In Figure 2, for a user who has AIDS, we found 
one similar user who has only AIDS with ABM, and found 
another two users who have both AIDS and gastritis when 
using RABM. The latter two users should also be similar users 
because users who have AIDS would take it as a more 
important privacy than most of other diseases. The latter two 
users would pay more attention to AIDS related records than 
gastritis related records, so their audit commands should also 
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be valuable for the audit requester. 

 
Fig. 3. Similarities of a user who have AIDS and pneumonia with other users 

In Figure 3, for a user with both AIDS and pneumonia, we 
found many similar users with ABM and only found three 
similar users with RABM. This is because the indicators of 
pneumonia impact the similarity calculation so much when 
using ABM. 

 
Fig. 4. Similarities of a user who have diabetes with other users 

In Figure 4, we found users who have diabetes with both 
methods. But we can find some similar users who have both 
diabetes and hepatitis when using RABM. This is because 
RABM can decrease the influence of the common indicators 
of the two diseases during the similarity calculation. 

 
Fig. 5. Similarities of a user who have flu with other users 

Flu is a fairly common disease and its related indicators 
are common for many diseases. So flu related indicators 
would be accessed more than other indicators. We found many 
similar users who have no flu when using ABM. But the 
results tend to be correct when we use RABM. This is because 
RABM can decrease the influence of the common indicators 
during the similarity calculation. 

 
Fig. 6. Recommendation accuracy for users with different diseases where 
Alice has AIDS, Bob has both AIDS and pneumonia, Cathy has diabetes and 
David has flu. 

We find the main indicator groups of every disease on a 
professional medical website. A main indicator group of a 
certain disease is a set of indicators that we can use to confirm 
whether someone has got the disease. For the selected similar 
users in Figure 2 to Figure 5, we simulate their audit logs on 
the basis of diseases they have. Then we calculate the 
recommendation priority of every incomplete audit commands 
obtained from their audit logs. In order to verify the accuracy 
of our methods, we select the number of recommendations 
depending on the diseases of the audit requester has, that is, 
we use the total number of main indicator groups of the user’s 
all diseases as the recommendation number. Then we divide 
the number of right recommendations by the number of all 
recommendations to obtain the accuracy. Figure 6 is the 
accuracy analysis of the audit recommendation part and the 
four groups are corresponding to Figure 2 to Figure 5. In the 
Group of Alice, we can see that the recommendation accuracy 
is better when using ABM. This is because there are two users 
who have both AIDS and gastritis are selected as similar users 
when using RABM and the two users have done some audits 
about pneumonia. In the Group of Cathy, the accuracy of the 
two methods is almost the same because the similar users who 
have two diseases are found with RABM affect the accuracy, 
but the influence is small. In the Groups of Bob and David, 
RABM displays better than ABM does, this is because RABM 
can adjust the influence of different health indicators to gain 
more accurate results. When we use RABM to calculate the 
similarities, the weights of AIDS related indicators are 
increased in the Group of Bob, and the weights of flu related 
indicators are decreased in the Group of David.  

VII. CONCLUSIONS 
This paper presents an audit recommendation framework 

to help users appropriately audit their sensitive records so as 
to have a good understanding of their privacy situation. We 
use doctors’ historical queries to calculate the similarity 
between two users. A weight vector of health indicators is 
used to adjust the influence of health indicators during the 
similarity calculation, which can improve the accuracy of the 
results. Then we analyze the audit commands that have been 
submitted by similar users and find some appropriate 
incomplete audit commands for an audit requester. We 
consider the similarities between the audit requester and other 
users during the calculation of recommendation priority. At 
last, we perform experiments on a set of simulated data to 
verify our methods. In the future, we will consider more about 
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the influence of time factor during the similarity calculation.  
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