

Audit Recommendation for Privacy Protection in
Personal Health Record Systems

Zhong Han, Yuqing Sun*, Yuan Wang
School of Computer Science and Technology

 Shandong University
Jinan, China

hanzhong15@163.com, sun_yuqing@sdu.edu.cn, wangyuan_2010@yeah.net

Abstract—Personal Health Record (PHR) systems store a
large amount of users’ health information, which is very sensitive
for users. So privacy protection is an important issue for PHR
systems. Although information technology audit can find out
improper accesses to users’ sensitive data that violate their
privacy policies, it is difficult for inexperienced users to use audit
commands. This paper presents an audit recommendation
framework to help users appropriately audit their sensitive
records so as to have a good understanding of their privacy
situation. For an audit requester, we analyze doctors’ historical
queries to find the similar users of the requester. Then we
analyze the audit commands of those similar users and make
some recommendations to the requester. Experiments are
performed to verify our method.

Keywords—audit; recommendation; personal health record
systems

I. INTRODUCTIONON
Personal Health Record systems are user-centered

electronic medical systems which store users’ personal health
information, such as Microsoft HealthVault and Google
Health [1]. The information in these systems includes medical
diagnoses, clinical symptoms, medication records, insurance
information and other data from medical devices such as
wireless electronic weight scales. It is convenient for users
and doctors to communicate with each other. Users can check
and share their health information. Doctors can know well
about the users’ health situations so as to make better
treatment options. Since PHR systems store a large amount of
users’ sensitive information, privacy protection is essential.
Some PHR systems allow users to set their own privacy
policies [2]. However, users may not know how to set the
privacy policies without affecting doctors’ diagnostic. Users
may worry about their health privacy if the policies are too
loose. But setting too strict policies may affect the treatment
in some emergency circumstances. In this case, general users
often assign more access rights to their doctors so as not to
affect the diagnostic.

However, assigning much too access rights to doctors may
lead privacy disclosure. In order to solve this problem, audit
technology is adopted to help users to check their privacy
situation. The advantage of audit is that users can discover and
track inappropriate queries and those related doctors. So audit
mechanism can constrain doctors’ behavior to some extent.
Hence, users can assign more access rights to doctors to allow

all necessary accesses. Some of current PHR systems provide
audit function for users, such as HealthVault allows users to
view the audit trails in their HealthVault account at any time.
But the audit function proposed by HealthVault is simple that
users can’t specify flexible audit goals. It is difficult for users
to find the privacy disclosure in a large number of log entries.
So providing more flexible and efficient audit functions for
users is necessary. However, those inexperienced users don’t
know how to audit efficiently, especially in big data and
complex access cases. For example, a user who has a heart
disease doesn’t want others to know the fact. He may want to
know whether some uncorrelated persons have viewed his
heart disease related records. But he doesn’t know how to do
an audit to achieve this goal. So audit recommendations are
necessary to help him to appropriately audit his records of
heart disease.

This paper proposes an audit recommendation framework
to solve this problem. The purpose of the framework is to
recommend appropriate incomplete audit commands to those
inexperienced users, help the users appropriately audit their
sensitive records so as to have a good understanding of their
privacy situation. The incomplete audit commands here
specify the audit commands that ignore the unimportant fields.
For an audit requested user, we first find users who have
similar diseases with the requester by analyzing doctors’
historical queries. Then we analyze the audit commands that
have been submitted by the similar users and obtain the
related incomplete audit commands. At last, we calculate the
recommendation priority of those incomplete audit commends
and recommend several ones with high priority to the audit
requester.

II. RELATED WORK

A. Query Auditing
The Health Insurance Portability and Accountability Act

(HIPAA) released by United States demands that users have
rights to know when and by whom their health information is
viewed. Query auditing is a security mechanism to conform
this rule. In order to implement query auditing, database keeps
query logs which record all queries and other related
information. For a given query log, query auditing analyzes
the queries in the log to determine whether some legal queries
have acquired users’ sensitive information. Auditors can make
further analysis on the basis of auditing results to find out the
persons who have disclose the sensitive information. An audit

* Corresponding author.

533

Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design

978-1-4673-6085-2/13/$31.00 ©2013 IEEE

framework for electronic medical record (EMR) systems has
been presented in [3] depending on the security rule of HIPAA.
If a patient’s privacy leaked after treating in a hospital, the
auditor of the hospital can find out the suspects who may have
disclosed the user’s privacy. The audit framework presents an
audit expression which is close to a SQL statement:

AUDIT audit list FROM table list WHERE condition list.

where audit list is a list of privacy attributes, table list is a list
of tables of the attributes in audit list and condition list is a list
of conditions that describe the target patients of the audit.
Literature [4] proposes an audit method which can analyze
any complex SQL statements. The audit method presented in
[5] can detect privacy disclosures caused by the combining of
multiple SQL queries. Literature [6] presents an audit method
under the environment of XML data query. Literature [7]
discusses the audit method after setting wrong access control
policies. Literature [8] presents an audit method under the
security rule of data retention. The existing literatures have
discussed audit methods in different ways. The methods are
mainly applicable to EMR systems in which the audit
functions are provided to professional auditors. Although the
existing audit methods can be applied to PHR systems, they
are not appropriate for those inexperienced users. So we
present an audit recommendation framework to help users to
appropriately audit their health privacy in PHR systems.

B. Recommender Systems
This paper is also related to recommender systems.

Recommender systems produce a list of items for users of
their interests, which are widely used in areas such as
electronic commerce and social network. There are four kinds
of implementation approaches of recommender systems [9]:
content-based filtering, collaborative filtering, social network
based filtering and network structure based filtering.
Collaborative filtering methods are widely used in
recommender systems. The idea of collaborative filtering is
that if two users have similar evaluations to some certain
items, they are similar users who share similar interests, so the
evaluations of them on other items should also be similar. This
paper adopts this idea, that is, if doctors have visited two
users’ health indicators in similar ways, the two users may
have same diseases, so they may concern same health privacy
and have same audit requirements. But the existing
recommendation approaches can’t be applied directly to PHR
systems because the methods of finding similar users in PHR
environments are different with those in traditional
recommender environments. In this paper, we calculate the
similarity between two users through doctors’ historical
queries, which is different to the similarity calculation
methods in recommender systems.

III. AUDIT RECOMMENDATION FRAMEWORK

A. Concepts and Notions
In a PHR system, we call a person user who uses the

system to store and manage his health information and call a
person doctor who accesses users’ health information for
treatment purposes. Let U and D be the set of all users and
all doctors in a PHR system, respectively, |U| and |D|

represent the number of elements in these two sets.

Definition 1(Health indicator):A health indicator is one
of the items of clinical results, physical test results and
medication records, such as cholesterol, blood pressure, blood
type, and so on. Let O be the set of all health indicators.

Definition 2(access transaction): An access transaction
records a data access in a PHR system. Each access
transaction is denoted as a tuple of the form <doctor, user,
objects, time>, where doctor D, user U and objects O.

For example, an access transaction of <Bob, Alice,
{cholesterol, blood pressure}, 2012/01/01> specifies that a
doctor Bob has accessed a user Alice’s health indicators of
cholesterol and blood pressure on the day of 2012/01/01.

Definition 3(accessed matrix): An accessed matrix
describes access behaviors of doctors. Each user has an
accessed matrix and we obtain a total accessed matrix through
all users’ accessed matrixes.

 For a user uk U(1 k |U|), his accessed matrix Bk
describes the accessed situation of his health indicators by
doctors, the size of Bk is |Dk|×|O| where |Dk| denotes the
number of doctors who have accessed uk. Bk(i, j)=1 if di Dk
has accessed uk, and 0 otherwise.

The total accessed matrix B describes the accessed
situation of all users, the size of B is |U|×|O|, we call each row
of B as a accessed vector, B(i, j) is the number of doctors who
have accessed ui’s health indicator oj.

Definition 4(similar user): For a user, his similar users
are those who have similar diseases with him. We calculate
the similarity between users through their accessed matrixes.

Definition 5(audit command): An audit command is
submitted by a user to audit the security situation of his
sensitive information. Each audit command is denoted as a
tuple of the form < audit_user, time1, time2, objects >, where
audit_user U and objects O, specifies that a user audit_user
audits the security situation of his health indicators in objects.

For example, an audit command of <Alice 2012/01/01
2012/01/10 {cholesterol}> specifies that Alice submits an
audit command to audit the security situation about her
cholesterol during 2012/01/01 to 2012/01/10.

B. The Audit Recommendation Framework
As shown in Figure 1, the audit recommendation

framework consists of two parts: similar users finding and
audit recommendation. In the first part, we find out similar
users of an audit requester. For each disease, there is a set of
health indicators related to it, doctors who treat the disease for
users would focus on the users’ health indicators of the set. If
two users have a same disease, doctors would focus on the
same set of their health indicators. So we compute two users’
similarity through the accessed situation of their health
indicators by doctors. We use a weight vector of health
indicators during the similarity calculation so as to acquire
more accuracy results. In the second part, we first abstract the

534

Fig. 1. An overview of the Audit Recommendation Framework.

audit commands that submitted by the similar users. Then we
acquire some related incomplete audit commands and
calculate their recommendation priority. At last, we
recommend several incomplete audit commands with high
priority to the audit requester.

IV. SIMILAR USERS FINDING
PHR systems record users’ illness history, but they may be

more concerned about the diseases that they have in recent
time. For an audit requested user, we first set a time window
[recentBegin, currentTime] which specifies a recently period
of time during which the user has a sick. To get the
recentBegin time, we select a time threshold and divide the
access transactions that related to the user into groups. The
time interval between any two records in each group is less
than the time threshold. The recentBegin is the time of the
earliest record in the recent group and the currentTime is
current time. The time window can also be set by the audit
requester. Let U, D and T, respectively, denote the set of
related users, doctors and access transactions within the
window [recentBegin, currentTime].

A. Create the Accessed Matrix
For a user uk U, we extract a subset Tk from T and let the

second term of the access transactions in Tk is uk. Then we
construct uk’s accessed matrix Bk and the size of Bk is |Dk| |O|,
where Dk is the set of doctors who have accessed uk. Each row
in Bk represents a doctor’s access situation on uk’s health
indicators. We only consider once even if a doctor accessed a
health indicator for many times. We construct a total accessed
matrix B by all users’ accessed matrixes, the size of B is
|U|×|O|, each row in B represents a user’s accessed situation
by doctors. We obtain the matrix B as follows

1
(,) (,)

kD

k
i

B k j B i j
=

=

(1)

B. Weight Vector of Health Indicators
Different health indicators should have different weights

when calculating the similarity between users. We use w to
represent a weight vector which marks the weights of all
health indicators. The weight vector w can be used to adjust
the influence of each health indicator during the similarity

calculation. If there is a health indicator that has been
accessed by doctors for most users, the health indicator may
not be sensitive and should be assigned a smaller weight. But
if the health indicator has been accessed by doctors for only a
few users, it may be a special one and should be assigned a
bigger weight. The weight of each health indicator oj O in w
can be computed as follows:

1

1
((,))

j U

i

w
isAccessed B i j

=

=

(2)

where for each health indicator oj, we calculate the number of
users whose oj have been accessed by doctors. Then take the
reciprocal of the number as the weight of the health indicator
oj. If the result of denominator equals 0, the result of wj is 0.
The function in (2) is as follows:

{ ((,) 0)0((,))
1

if B i jisAccessed B i j else
==

(3)

C. Similarity Calculation

For an audit requested user ui, we calculate the similarity
between ui and other users. We get a revised accessed matrix
M in which we consider the influence of different health
indicators. The matrix M is constructed through the accessed
matrix B and the weight vector w:

(,) (,) jM i j B i j w= ×

(4)

We use cosine similarity formula to calculate the similarity
between ui and uj

[12]:

 (,)
()()i jsim u u =

T
i j

T T
i i j j

M M
M M M M

 (5)

where Mi and Mj, respectively, denote the i-th row vector and
the j-th row vector in matrix M. We specify a threshold r, the
user whose similarity with ui is bigger than r is a similar user
of ui.

535

V. AUDIT RECOMMENDATION
As the time fields in an audit command have so many

possible selections, we ignore them when making a
recommendation. An audit command is called as an
incomplete audit command if we ignore its time fields and the
first term. Such as <{cholesterol}> is an incomplete audit
command related to an audit command of < Alice 2012/01/01,
2012/01/10 {cholesterol} >. For an audit requested user, we
first extract and find appropriate incomplete audit commands
from the audit histories of his similar users’, then recommend
them to the requester to help him set appropriate audit
commands.

Assume that we are recommending audit commands to ui.
Let vk Si(1 k |Si|) be a user in Si, where Si is the set of ui’s
similar users. Let Ak be a set of audit commands that
submitted by vk within the window [recentBegin, currentTime].
Then the set of all audit commands of ui’s similar users can be
expressed as A=A1+A2+A3+…+A|Si|. Then we partition A into
subsets as A=A1’+ A2’+ A3’+…Ap’, where in Aj’ there exist
only one kind of audit commands that have same objects. Let
aj’ be the incomplete audit command related to the audit
commands in Aj’. So the total number of incomplete audit
commands related to A is p. Then we construct a matrix C
with a size of |Si|×p, where C(k,j) represents the number of
audit commands that related to aj’ and submitted by vk. As
everyone’s audit habits may be different, so we deal with the
matrix C to obtain a revised matrix C* as follows:

*

1

(,)(,)
(,)p

j

C k jC k j
C k j

=

=

(6)

where the denominator represents the total number of audit
commands that have been submitted by vk. Each row in C* can
be understood as a similar user’s interesting degrees to all the
incomplete audit commands. We calculate the
recommendation priority of every incomplete audit commands
for ui as follows:

*

,

((,) ((),))

(,)
i

i

iu S
i j

iu S

sim u u C getRowNum u j
P

sim u u
∈

∈

×
=

(7)

where the function getRowNum(u) returns the row number of
u in matrix C*. The main idea to calculate Pi,j is that sum all
the similar users’ interesting degrees on aj’ and also consider
the similarity during the calculation. The greater the final
result of Pi,j is, the more attention on aj’ would be paid by ui.
Then, we recommend several incomplete audit commands
with high priority to ui.

VI. EXPERIMENTS
We perform experiments on a set of simulated data to

verify our methods. In order to verify the correctness of the
similar users finding part of our framework, we perform 4
experiments where we select four typical users and calculate
their similarity with other users. The results are expressed in
Figure 2 to Figure 5. Then we verify the correctness of the
audit recommendation part of our framework according to the
similarity calculation results of Figure 2 to Figure 5 and the

accuracy calculation results of recommendation are expressed
in Figure 6.

According to the diseases introduction on a professional
medical website we find 28 diseases and their related
indicators. Then we construct 141 users and randomly assign
1-2 diseases to each user. We predicate the accessed situation
of those 141 users depending on the diseases that assigned to
them. As doctors tend to cooperate with each other when they
work and the optimal number of cooperation is 6 [10, 11]. So for
a user and one of his diseases, we use a random number
between 5 and 7 to denote the number of doctors who have
accessed his health indicators that related to the disease. We
first construct an original accessed matrix by the 141 users
and their diseases. Then we obtain a revised accessed matrix
by a weight vector and the original accessed matrix. We use
these two matrixes to calculate the similarity between users in
the following experiments. We call the calculation method as
accessed-matrix based method (ABM) when using the
original accessed matrix and revised accessed-matrix based
method (RABM) when using the revised accessed matrix
during the similarity calculation.

We select four typical diseases: AIDS, diabetes, pneumonia
and flu to perform experiments, where AIDS stands for
special diseases, diabetes and pneumonia stand for serious
diseases and flu stands for common diseases. Then we select
four users from the 141 users and each one of the four users
has one or two diseases of the four diseases. We use both
ABM and RABM to get the four users’ similar users. We
found that the similarity calculation results are more conform
to our actual expectations when using RABM. In the
following several figures, each figure represents the similarity
calculation results of one of the four users with other users.
The dotted lines represent the similarity between the user and
other users when using ABM, the solid lines represent the
results when using RABM. Here we say two users are similar
users if their similarity is bigger than 0.8.

Fig. 2. Similarities of a user who have AIDS with other users

AIDS is a special disease and the number of users who
have AIDS is so small, but it is a very sensitive privacy for
those users. In Figure 2, for a user who has AIDS, we found
one similar user who has only AIDS with ABM, and found
another two users who have both AIDS and gastritis when
using RABM. The latter two users should also be similar users
because users who have AIDS would take it as a more
important privacy than most of other diseases. The latter two
users would pay more attention to AIDS related records than
gastritis related records, so their audit commands should also

536

be valuable for the audit requester.

Fig. 3. Similarities of a user who have AIDS and pneumonia with other users

In Figure 3, for a user with both AIDS and pneumonia, we
found many similar users with ABM and only found three
similar users with RABM. This is because the indicators of
pneumonia impact the similarity calculation so much when
using ABM.

Fig. 4. Similarities of a user who have diabetes with other users

In Figure 4, we found users who have diabetes with both
methods. But we can find some similar users who have both
diabetes and hepatitis when using RABM. This is because
RABM can decrease the influence of the common indicators
of the two diseases during the similarity calculation.

Fig. 5. Similarities of a user who have flu with other users

Flu is a fairly common disease and its related indicators
are common for many diseases. So flu related indicators
would be accessed more than other indicators. We found many
similar users who have no flu when using ABM. But the
results tend to be correct when we use RABM. This is because
RABM can decrease the influence of the common indicators
during the similarity calculation.

Fig. 6. Recommendation accuracy for users with different diseases where
Alice has AIDS, Bob has both AIDS and pneumonia, Cathy has diabetes and
David has flu.

We find the main indicator groups of every disease on a
professional medical website. A main indicator group of a
certain disease is a set of indicators that we can use to confirm
whether someone has got the disease. For the selected similar
users in Figure 2 to Figure 5, we simulate their audit logs on
the basis of diseases they have. Then we calculate the
recommendation priority of every incomplete audit commands
obtained from their audit logs. In order to verify the accuracy
of our methods, we select the number of recommendations
depending on the diseases of the audit requester has, that is,
we use the total number of main indicator groups of the user’s
all diseases as the recommendation number. Then we divide
the number of right recommendations by the number of all
recommendations to obtain the accuracy. Figure 6 is the
accuracy analysis of the audit recommendation part and the
four groups are corresponding to Figure 2 to Figure 5. In the
Group of Alice, we can see that the recommendation accuracy
is better when using ABM. This is because there are two users
who have both AIDS and gastritis are selected as similar users
when using RABM and the two users have done some audits
about pneumonia. In the Group of Cathy, the accuracy of the
two methods is almost the same because the similar users who
have two diseases are found with RABM affect the accuracy,
but the influence is small. In the Groups of Bob and David,
RABM displays better than ABM does, this is because RABM
can adjust the influence of different health indicators to gain
more accurate results. When we use RABM to calculate the
similarities, the weights of AIDS related indicators are
increased in the Group of Bob, and the weights of flu related
indicators are decreased in the Group of David.

VII. CONCLUSIONS
This paper presents an audit recommendation framework

to help users appropriately audit their sensitive records so as
to have a good understanding of their privacy situation. We
use doctors’ historical queries to calculate the similarity
between two users. A weight vector of health indicators is
used to adjust the influence of health indicators during the
similarity calculation, which can improve the accuracy of the
results. Then we analyze the audit commands that have been
submitted by similar users and find some appropriate
incomplete audit commands for an audit requester. We
consider the similarities between the audit requester and other
users during the calculation of recommendation priority. At
last, we perform experiments on a set of simulated data to
verify our methods. In the future, we will consider more about

537

the influence of time factor during the similarity calculation.

ACKNOWLEDGMENT

Part of this work is supported by the National Natural
Science Foundation of China (61173140), the National
Science & Technology Pillar Program (2012BAF10B03-3),
the Science Foundation of Shandong Province (Y2008G28),
and the Independent Innovation Foundation of Shandong
University (2010JC010).

REFERENCES
[1] A. Sunyaev, D. Chomyi, C. Mauro, and H. Krcmar, “Evaluation

Framework for Personal Health Records: Microsoft HealthVault vs.
Google Health,” Proc. 43rd Hawaii International Conference on System
Sciences, Kauai, Hawaii, 2010, pp.1-10.

[2] I. Carrión, J.L. Fernández-Alemán and A. Toval, “Assessing the HIPAA
Standard in ractice: PHR Privacy Policies,” Proc. 33rd Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, 2011, pp. 2380-2383.

[3] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kieman, R. Rantzau and R.
Srikant. “Auditing compliance with a hippocratic database,” Proc. 30th
International Conference on Very Large Data Bases, Toronto, Canada,
2004, pp.516-527.

[4] K. Raghav and R. Ravi. “Efficient auditing for complex sql queries,”
Proc. ACM's Special Interest Group on Management Of Data, Athens,
Greece, 2011, pp.697-708.

[5] R. Motwani, S.U. Nabar, D. Thomas. “Auditing sql queries, “ Proc. 24th
International Conference on Data Engineering, Cancun, Mexico, 2008,
pp.287-296.

[6] B. Stefan and H. Rita. “Information disclosure by answers to xpath
queries,” Journal of Computer Security, vol.17, pp.69-99, January 2009.

[7] D. Fabbri, K. LeFevre and Q. Zhu, “Policyreplay: misconfiguration
-response queries for data breach reporting,” VLDB Endowment, vol.3,
pp.36-47, September 2010.

[8] W. Lu, G. Miklau. “Auditing a database under retention restrictions,”
Proc. 25th International Conference on Data Engineering, Washington,
DC, USA, 2009, pp.42-53.

[9] G.X. Wang, H.P. Liu. “Survey of personalized recommendation
system,” Computer Engineering and Applications, vol.48, pp.66-76,
2012.

[10] Y. Chen, B. Malin. “Detection of anomalous insiders in collaborative
environments via relational analysis of access logs,” Proc. first ACM
conference on Data and application security and privacy, New
York,USA, 2011, pp.63-74.

[11] Y. Chen, S. Nyemba, and B. Malin. “Detecting anomalous insiders in
collaborative information systems,” IEEE Trans. Dependable Sec.
Comput., vol.9, pp.332-344, May 2012.

[12] B. Sarwar G. Karypis J. Konstan et al. “Item-based collaborative
filtering recommendation algorithms,” Proc. 10th International
Conference on World Wide Web, New York, 2001, pp.285-295.

538

