
Journal of Computational Information Systems 5:1 (2009)

Available at http://www.jofcis.com

1553-9105/ Copyright © 2009 Binary Information Press

February, 2009

A New Business Process Model in Web Service Environment

Qing YAO
1†

, Yuqing SUN
1
, Haiyang WANG

1

1 College of Computer Science & Technology, Shandong University

Jinan 250101, China

Abstract

This paper introduces the background and motivation of a new business process model, customized flow model, applied to

a web service environment. It then presents a prototype system (Intelligent Platform of Virtual Travel Agency, IPVita)

developed for this research, narrates the IPVita’s architecture and functions. After giving definitions of the customized flow

model, the paper describes how to analyze and capture customer’s requirements and how to generate a customized flow

according to these requirements.

Keywords: Software Architecture; Process Modeling; Customized Flow; Web Service; Goal Oriented

1. Introduction

The research discussed in this paper focuses on Process Factors[1,2,3] of BPM(Business Process

Management) software in a web environment, and explores new process application model based on Web

Services. In this paper, business process is named as flow. We have developed an Intelligent Platform of

Virtual Travel Agency, IPVita, as a prototype system. Under this platform, flows are executed as

customized flows. Main functionalities of the platform are: help registered customers with travel

destinations and service requirements, and generate travel route accordingly, and eventually create

customized flow of service. This flow then runs throughout the customer’s actual trip. The flow is a

customized one since it is generated for one customer or a group of customers with exactly the same

itinerary, and it is executed in a Web Service environment.

The structure of this paper is as follows. Section 2 gives the architecture of IPVita, and then Section 3

describes the customized flow model. In Section 4, we depict how to capture customer’s requirements and

generate service flows. Finally, Section 5 provides experiments of some process, and Section 6 concludes

the paper and indicates key topics for future research.

2. Architecture

The IPVita platform architecture can be illustrated by Figure 1[4]. The platform consists of four

components: 1) User Interface. 2) Flow Generation. 3) Web Service Binding for Flow. 4) Repository

Management.

 User Interface: it is used for customer requirements gathering (i.e. travel goal gathering) and

maintenance of the Domain Repository by the domain experts in travel services. The main functionality of

the customer requirements gathering interface is to help the customer to identify the goals based on the

Goal Repository. There are two possibilities here. a) The customer is very clear about his/her goals and

† Corresponding author.

 Email address: yaoqing@sdu.edu.cn (Qing YAO)

mailto:yaoqing@sdu.edu.cn

Q. Yao et al. /Journal of Computational Information Systems 5:1 (2009)

140

requirements, is able to interact with the platform and follows the step-by-step suggestions to get a

goal-tree. b) The customer can only provide some restrictive conditions or personal preferences. In this case,

the platform needs to provide multiple iterations of heuristic communion by utilizing existing goal

knowledge to ultimately achieve a satisfactory goal-tree. The final product is a goal-tree representing the

customer requirements. This goal-tree is the foundation for generating a customized flow.

On the other hand, the domain expert interface allows these professionals to maintain the Domain

Repository, which includes Scenario Repository, Goal Repository and Experiential Flow Repository.

 Flow Generation: Once the goal-tree is available for a customer, a service flow is generated and

modified by searching the Scenario Repository. This software component consists of a searching and

assembling algorithm and an interface management program for customers and domain experts.

 Web Service Binding of Flow: We have developed a web service search and match binding algorithm

based on the existing web service composing technique. At present the algorithm is a very simple one; it is

only used for functional testing of the platform and will be refined and improved later.

 Repository Management: This involves the enrichment and optimization of the Scenario Repository

and the Goal Repository, and the maintenance and optimization of the Experiential Flow Repository. The

already-developed Customer Goal Analysis Algorithm, although very simple, has some self-learning

capabilities. Generic Algorithm will be adopted to enhance the self-learning and optimization features of

the Goal Repository.

Figure 1 Outline of the Intelligent Platform of Virtual Travel Agency

3. Customized Flow Model

We begin with the definition of the flow model, because of its crucial effect on the entire software

framework. We suggest that flows should be organized by a set of relatively independent scenarios,

comprised of a series of behaviors driven by real-time events to perform their independent functions.

Event: An event is a single point in time when something happens, according to Allen’s conception of

temporal semantics[5]. Events are treated as semaphores, which initiate a state transition.

Definition 1 Event = <E_TypeID, Name, Time, RelationID, Rank>.

Event is a 5-tuple. E_TypeID is a special type identifier of an event, denoting the domain to which an

event belongs. Name is the title of an event, such as payment, no air ticket, or login. Time refers to the

Q. Yao et al. /Journal of Computational Information Systems 5:1 (2009)

141

beginning time of an event. RelationID indicates the event relationship space that depicts all dependent

relationships of events involved. Event is assigned a rank (weight) in a flow to represent its importance in

the flow.

Behavior: A behavior is a fine granularity of activity, specifying the basic goals to be achieved, together

with a number of roles required, the cost, and a number of resource and constraint specifications. It is

executed by an agent that may be a person or a software program, and can eliminate inbound events and

generate outbound ones. Behavior has attributes of Default, Alternative, or Optional. See Definition 4 for

Goal. Examples include book air ticket, check suitable hotels and local entertainment. It is a 8-tuple.

Definition 2 Behavior = <B_TypeID, Goal, Role, InboundEvent, OutboundEvent, Constraints, Cost,

Attribute>[6].

Scenario: A scenario consists of several behaviors. It is used to achieve a specific goal by implementing

those behaviors. It also has attributes of Default, Alternative, or Optional. In our software framework,

scenarios are primarily implemented by web services.

Definition 3 Scenario = <S_TypeID, BehaviorsList, Goal, Constraints, Attribute>

Goal: Goal can be achieved by a behavior, or a scenario. A goal will rely on or consume some resources.

Definition 4 Goal= <G_TypeID, Name, Resources, Rank, Attribute>

It is a 5-tuple. Rank is its layer in the goal net, which includes all design goals of a customized flow.

Attribute has a value of “on” or “off”, means that this goal can be considered or not.

GoalTree: GoalTree describes the requirements of a customer. Every goal node is a 5-tuple. Weight

denotes importance of a goal. Each node has some characteristics that contribute to customer preferences in

his(her) travel, such as shopping, sport, religion, time consumption, and cost etc.

Definition 5 GoalTree = <G_TypeID, Name, Constraint, ContributionList, Weight>

Root node is an integrative goal, we call it maintenance goal, which reflects the customer’s trip-specific

interests, requirements and restrictive conditions (e.g. cost, choice of transportation means, etc.). The

names of the cities or regions along the travel routes are sequentially stored in the second-level nodes, and

we call it achievement goal. An achievement goal includes maintenance sub-goals; conversely, a

maintenance sub-goal can place a constraint on an achievement goal. There are many achievement goal

nodes at the third level, where travel items within a given city (region) are stored.

Flow: A flow is a list of scenarios that have determinate relations. It is a 6-tuple.

Definition 6 Flow = <F_TypeID, Name, ScenarioList, RelationList, Goal, GoalTree>

F_TypeID is a string symbol that describes what business type the flow belongs to. RelationList is a list

composed of relations, as in definition 7.

Definition 7 Relation = <a,Si,Sj>

a∈A={→, ,,⊗，⊙，◎}[7], is symbol of association. Si, Sj∈(Scenario Set). Every symbol of

association represents a relationship between two scenarios, e.g., ((→,Paying_000,Booking_010),

(,Reserving_020,Flighting_000), (⊗,Car_renting, Hotel_service_000)……). Paying is a prerequisite for

booking. Reserving should be executed in advance or in parallel with arranging flights. Car_renting can

overlap with Hotel_service.

→: Prerequisite Association

Si → Sj: The prerequisite relationship means that one scenario has to finish before the other starts.

Scenario Si has to finish before scenario Sj starts.

: Parallel-Prerequisite Association

Si Sj: Here Si presents at the same time as Sj, but Sj has to wait for the result from Si before

completing its process.

⇔: Parallel-Dependency Association

Si ⇔ Sj: Here Si and Sj progress in parallel (simultaneously), but the results of each scenario need to be

coordinated with the other.

⊗: Overlapping Association

Q. Yao et al. /Journal of Computational Information Systems 5:1 (2009)

142

Si ⊗ Sj: Here, Si has some capacities that are the same as Sj. To compose this overlapping association,

the overlapping parts from the scenario that cost more need to be excluded.

⊙：Mutually Exclusive Association. ◎: Incorporate Association.

Thus far, we have defined a flow model, which is the key part of the software framework. The next

section depicts how to generate such a flow.

4. Customer’s Requirements Capture and Service Flow Generation

4.1. Goal-Analysis Algorithm

Input: maintenance goals and restrictive achievement goals.

Output: customer’s goal-tree, GT.

Step1: Create a null customer goal-tree GT0.

Step2: Communicate with the customer: get his/her maintenance goals and restrictive achievement goals.

Step3: Add customer’s restrictive achievement goals to GT0

Step4: Search for achievement goals in the Goal Repository, according to the customer’s maintenance

goals.

Step5: If there exist suited achievement goals,

Then call a Filter Genetic Algorithm to select most suitable goals and add them to GT0.

Else invoke the Self-learning Algorithm and update the Goal Repository, and mark the unfit maintenance

elements of the customer’s maintenance goals.

Step6: Check if the customer’s maintenance goals are met. If it is OK, go to step 8.

Step7: Communicate with the customer and disassemble his/her maintenance goals, so as to rebuild them.

Go to Step 4.

Step8: Adjust GT0 by aggregating contributions from all leaf nodes of GT0, and then compare the result

with the customer’s maintenance goals. Delete those leaf nodes that have lower contribution values until

the result matches the maintenance goals.

Step9: Determine the validity of the Goal-Tree. Follow the goal analysis rules to check GT0 for location

continuity and time continuity. If the result is invalid, go to Step 7; otherwise, let GT= GT0.

Step10: Output GT.

4.2. Method of customized flow modeling

4.2.1. Extended EPCs

EPC are an intuitive graphical business process description language introduced by G.Keller[8]. It is the

modeling tool used by the Architecture of Integrated Information System(ARIS)[9]. EPC has a strong

ability of model expression and is easy to understood, so it is widely used in BPR and workflow definition.

At the present time, for meeting the requirement of different models, EPC is extended to several modes[10].

In this paper, based on the requirement of customized flow, EPC is extended by adding two elements: goal

and variable attribute. We call it Customized Extended-EPC(CE-EPC).

Definition 8. CE-EPC=<E，P，C，T，A，G，a>

It is a seven-tuple. In which, E is a finite set of events. P is a finite set of functions. C is a finite set of

logical connectors. T∈C→｛AND，OR，XOR｝ is a function which maps each connector onto a connector

type. A⊆ (E×F)∪(F×E)∪(E×C)∪(C×E)∪(F×C)∪(C×F)∪(C×C) is a set of arcs. G is a set of goals. “a”

is a value describing the variable attribute of P (on or off).

4.2.2. Process of the Customized Flow Modeling

Goal-Analysis Algorithm catches the fundamental goals of customers through interaction with him(he), that

is, GoalTree[11]. Then this GoalTree is transformed to design goals (see definition 4) according to design

Q. Yao et al. /Journal of Computational Information Systems 5:1 (2009)

143

goal template, which are divided into independent small granularity goals in order to reduce the

complexity.

The steps of generating customized flow can be summarized as follows: First, for a certain independent

goal in the design goals, search in the scenario repository to get the useful scenarios and the relationships

between them (shown in the definition 7). Hereby, we can get all the scenarios of each goal. Partial

CE-EPC of each scenario is created through the Modeling-SubFlow process. Then, integrate the partial

CE-EPCs of every goal through the Merging-SubFlow process to create a flow.

 (1) Modeling-SubFlow: a single scenario is mapped to CE-EPC by analyzing and linking behaviors in

it. This algorithm is guided by the following rules.

 Behaviors are linked one by one base on the time order and mapped to the function P of CE-EPC.

 The inbound events and outbound events of behaviors are mapped to the event E of CE-EPC.

 The single event is regarded as single input of P.

 For the behavior of more than one input or output event, the events are jointed by the connector XOR

as one input or output E.

 For the variable attribute of behavior triggered by a certain event, according to the attribute value, the

mapping rules are shown in table 1.

Table 1 the mapping rules from the variable function triggered by a certain event to EC-EPC

Function

attribute
Mapping rules Example

All default
All of the behaviors are jointed by the connector

Cs-And (Cs: one father node，many son nodes)
Omit

All Alternative
All of the behaviors are jointed by the connector

Cs-XOR
Omit

All Optional
All of the behaviors are jointed by the connector

Cs-OR
Omit

Default and Alternative

All of the default behaviors and a XOR

connector which joint all the alternative

behaviors are jointed by the connector And.

Default and Optional

Firstly, the default behaviors are set, and the

input event triggering the optional behavior is

added to the output event of the default behavior.

Then add an OR connector following that event

to joint all optional behaviors.

Alternative and

Optional

Firstly, copy this event and give it another name

(they are two different events now). Then joint

them by a Cj-And connector. Finally, the two

events are followed respectively by the

alternative behaviors and optional behaviors.

（Cj: many father nodes，one son node）

After the initial CE-EPC is constructed, business experts examine the logical rationality based on the

completion of goals from the business point of view. At the same time, the variable attribute of P is

assigned a value.

（2）Merging-SubFlow: scenarios(SubFlow) are merged and integrated.

Every selected scenario will be transformed to a CE-EPC(subflow). The following work merges the

CE-EPC of scenarios. We designed an algorithm and some rules to merge and reconstruct the scenarios.

Q. Yao et al. /Journal of Computational Information Systems 5:1 (2009)

144

Following is its main steps:

According to the relationship of different scenarios, the merging method is different.

 For Prerequisite Association <→,Si,Sj>: the output event of Si and input event of Sj are simply jointed

by Cs-And, then linked with Sj.

 Parallel-Prerequisite Association< ,Si,Sj>: means that there are relationships between the output

events of Si and some events in Sj. In other words, the output events of Si are the input events of some

behaviors in Sj. Refering to the event relationship space, search out the dependent events of Si’s

output events. These events in Sj are the joint point of the two scenarios.

 Parallel-Dependency Association <⇔,Si,Sj>: the CE-EPC of the two scenarios need to be integrated

and reconstructed completely. We adopts the algorithm of merging two EPCs introduced in

reference[12].

 Overlapping Association <⊗,Si,Sj>: the overlapping parts of the scenarios that cost more need to be

exclude. So the overlapping part of a scenario is deleted, then they are jointed through the same way

as Prerequisite Association.

Through the above two processes: Modeling-SubFlow and Merging-SubFlow, a customized service flow

is generated initially. Next work is to simplify and verify the flow. We adopt the thought of transforming

EPC to Petri Net[13, 14] and then verify the Petri Net’s rationality. The verifying rationality algorithm

checks the flow’s state space through automata theory method.

5. Experiments

We have manually compiled about 350 business goals for the travel domain, and created the Goal

Repository according to the hierarchical relationships among the goals. The Scenario Repository, which

stores about 100 scenarios with their embedded behaviors, is created the same way. The Experiential Flow

Repository is partially populated in a similar fashion with about 150 virtual experiential flows.

At present, experiments focus on two issues: 1) Customer goal analysis(Algorithm Goal-Analysis) and 2)

Modeling-SubFlow and Merging-SubFlow.

5.1. Goal-analysis Algorithm

Currently, this algorithm is not perfect. It is executed while IPVita interacts with a customer, and can run

repeatedly until a qualified result is obtained. We found that there are two factors that may determine its

success: 1) whether the content of the Goal Repository is sufficiently complete; and 2) whether a customer

provides restrictive achievement goals. Satisfying these two factors can assist the Goal-Analysis Algorithm

to quickly get a goal-tree that meets the requirements. If, however, the customer leaves out restrictive

achievement goals and provides maintenance goals only, then the analysis process becomes rather complex

and may require many iterations and the GoalTree generated from each iteration may be different.

5.2. Flow Generation

We designed more than thirty representative GoalTree data to execute Modeling-SubFlow and

Merging-SubFlow. Table 2 gives some typical experiment results. It is recognized that with the goals

number increasing, business experts’ intervention works are increased as well.

Table 2 Algorithm Modeling-SubFlow and Merging-SubFlow Results

Number of

Goal Nodes

Number of

Initial Selected

Scenarios

Effectual

Scenarios

Manual Work

Ratio
Rational

Successful

After

Modification

8 18 11 10% YES YES

6 15 10 10% NO YES

10 18 11 35% YES YES

12 22 13 20% YES YES

14 22 18 20% NO NO

Q. Yao et al. /Journal of Computational Information Systems 5:1 (2009)

145

17 23 18 20% YES YES

20 29 20 30% YES YES

24 34 27 30% NO YES

25 45 30 30% YES YES

28 45 30 32% NO YES

32 50 35 40% NO YES

34 54 40 40% YES YES

6. Conclusions and Future Work

We set out to develop a business process model and supporting software framework capable of facilitating

a specific management method for business processes in a web service environment: that is, customized

flow. This paper first defines a conceptual model of customized flow with its combined elements is

introduced. After describing how to generate a customized flow by capturing customer requirements, we

present our experiment processes and discuss the result.

While believing that we have made progress in exploring BPM methodology suitable for a web services

environment, we also understand that there is much still to be accomplished. In particular, the flow model

still needs to be optimized, and further, there is a need for a better requirement analysis method that

addresses challenges unique to customized business process management applications. Work is continuing

on both of these aspects.

Acknowledgement

This work is supported by NSFC (National Natural Science Foundation of China) under Grant No.

60673130.

References

[1] F. Q. Yang, H. Mei, J. Lu, Z. Jin, Some Discussion on the Development of Software Technology, Acta

Electronica Sinica, 2002, 30(12A): 1901-1906.

[2] Z. L. Chen, Q. X. Wang, H. Mei, F. Q. Yang, Dealing with the variability in object-oriented domain design. Acta

Electronica Sinica, 2001, 29(11): 1486-1490

[3] S. H. Liu, J. Wei, T. Huang, A Dynamic Process Model Based on service Cooperation Middleware. Journal of

Software, 2004, 15(10): 1431-1440.

[4] Q. Yao, L. Z. Cui, H. Y. Wang, Toward Cooperative Designing of Customized Business Process in Web Service

Environment, Computer Supported Cooperative Work in Design, 2007

[5] Sutcliffe, A. (1998) Scenario-Based Requirement Analysis. Requirements Engineering, 3, 48 - 65

[6] Henricksen, K. and Indulska, J. (2004) A Software Engineering Framework for Context-Aware Pervasive

Computing. Proceedings of PERCOM’04, Orlando, Florida, Mar. 14-17, pp. 77-86, IEEE Computer Society,

California

[7] Limthanmaphon, and Y. Zhang, B. (2003) Web Service Composition with Case-Based Reasoning. The

Fourteenth Australian Database Conference (ADC2003), Adelaide, Australia, Inc.Vol.17:201-208, Australian

Computer Society, Australian

[8] Van Der Aalsta, W.M.P.（1999） Formalization and verification of event-driven process chains. Information and

Software Technology, 41, 639-650

[9] Scheer, A. W. and Nuutgens, M. (2000) ARIS architecture and reference models for business process

management. LNCS/Business Process Management, 1806, pp.301-304, Berlin, Germany

[10] Mendling J. Neumann G. and Nüttgens M.(2005) Yet Another Event-Driven Process Chain, LNCS/Business

Process Management, 3649, 428-433

Q. Yao et al. /Journal of Computational Information Systems 5:1 (2009)

146

[11] Regev, G. and Wegmann, A. (2005) Where do goals come from: The underlying principles of goal-oriented

requirements engineering. 13th IEEE International Conference on Requirements Engineering (RE'05), La

Sorbonne, France, Aug.29, pp.353- 362. IEEE Computer Society, Los Alamitos, California

[12] Mendling, J. and Simon, C. (2006) Business Process Design by View Integration. LNCS/Business Process

Management Workshops, 4103, pp. 55-64, Berlin, Germany

[13] Mendling J. Neumann G. and Nüttgens M. (2005) Towards Workflow Pattern Support of Event-Driven Process

Chains (EPC). 2nd Workshop XML4BPM 2005, Karlsruhe, Mar.1, pp.23-38. Karlsruhe, Germany

[14] Van Der Aalst W. M. P. (2003) Challenges in Business. Process Management: Verification of Business Processed

Using Petri Nets. Bulletin of the EATCS, 80, 174-199

