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Abstract. With the increasing importance of location based services in
people’s daily lives, location related privacy becomes a critical issue. Most
of the current solutions protect users’ privacy by cloaking users’ exact
positions when they invoke requests on the location based service. In this
paper, we tackle the location privacy problem in navigation applications
in a different way. Based on the trusted third-party architecture and the
k − anonymity criterion, we propose a coordinative path planning algo-
rithm for collective privacy. The novelty resides on two folds. One fold is
from the predication perspective rather than the current solutions’ focus-
ing on on-site users. A user would be recommended a privacy-preserving
path when he sends a navigation request. Another fold is by intentionally
collective privacy rather than the traditionally independent calculation.
The planned path for each user would be adjusted such that a set of users
could be provided more privacy without degrading each user’s privacy.
To evaluate the proposed solution, we perform a set of experiments on
both synthesis data and practical data. The experimental results show
the efficiency and effectiveness of our method.
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1 Introduction

The development and integration of wireless communication and positioning
technologies have promoted the generation and advances of location based ser-
vices (LBS). By obtaining an individual’s location information, location-based
service providers can help him/her for navigation, friend-finder, point of interest
(POI), or emergency rescue, etc. Although the wide variety of location-based
services provide convenience to people’s lives, the accessed location information
may reveal personal habits, social customs, religious or other privacy information
of individuals, which is a potentially serious threat to people’s privacy.

The most representative technique for preserving privacy in LBS is to intro-
duce a trusted third party anonymity server and the k − anonymity criterion
[1–6]. After getting a LBS request from a user, the anonymity server would send
a cloaking region instead of the user’s exact position to a LBS server [7] such that
there are other k−1 users in the same region. Under this scheme, the uncertainty,
which an adversary has in matching each exact user to a known location-identity
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association, depends on the number of actual users in the same cloaking region
at the same time. However, in practice, there may not exist enough users in a
considered region all the time, which makes the k−anonymity criterion unsatis-
fied. Although some methods consider this case by enlarging the cloaking region
or delaying the response [4], they degrade the quality-of-service (Qos) on spatial
inaccuracy or response time.

Another representative scheme is based on peer-to-peer architecture, where
the location privacy is protected by users’ sharing LBS information with each
other or by generating a cloak region among them. However, these solutions
are based on the assumption that all users are benign and wiling to participate
for collaboration. In case there is a malicious user in the group participating the
collaboration, the cloaking result as well as the privacy would not be controlled[8,
9]. Shokri et al. propose an approach that a user can get the required LBS
information from his neighbours, who send the same quires to a LBS server
recently and have stored the results in their buffers. Otherwise, the user has
to query the LBS server himself. The main drawback of this proposal is that
each user has to store large-scale data and the provided information may not
be applicable to the real-time context. Therefore, it is a challenging problem to
protect users’ location privacy without degrading the quality of LBS.

In this paper, we tackle the location privacy problem in the navigation appli-
cations in a different way. Based on the trusted third-party architecture and the
k− anonymity criterion, we propose a coordinative path planning algorithm for
multiple users. The novelty resides on two folds. One fold is from the predication
perspective rather than the current solutions’ focusing on on-site users. Another
fold is by intentionally collective privacy rather than the traditional indepen-
dent calculation. When a user sends a navigation request, he is recommended a
privacy-preserving path according to his preference, on which the k-anonymity
is satisfied. The planned path may be adjusted when he moves ahead such that
a set of users could be provided more privacy without degrading each user’s pri-
vacy. The purpose of this mechanism is to benefit multiple individuals via their
collective activities. This idea is inspired by the collective intelligence, where
a consensus decision can be made by sharing or grouping intelligence of many
individuals aiming to improve the group conditions. To evaluate the proposed
solution, we perform a set of experiments on both synthesis data and practi-
cal data. The experimental results show the efficiency and effectiveness of our
method.

The rest of this paper is organized as follows. Section 2 summarizes the related
works. We present the details on the framework and the proposed algorithm in
Section 3. In Section 4, we discuss the experimental evaluation of our proposed
method. Finally, section 5 concludes the paper with a discussion on future work.

2 Related Work

K-anonymity Based Privacy Protection. Location k-anonymity is first pro-
posed by Gruteser et al. in [3], which requires not less than a number k of users
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in a considered region covering the LBS query senders. They develop a quadtree-
based cloaking algorithm to construct cloaking area. However, this method pro-
tects location privacy based on the assumption of enough users in a cloaking
region, which can not be satisfied all the time in real life. Gedik et al. develop
the method of enlarging the cloaking region to satisfy the k − anonymity cri-
teria [4]. But this approach would degrade the quality-of-service (QoS) of LBS
applications at the same time.

Different from above solutions considering the snapshot LBS query, Chow
et al. solve the privacy problem in continuous query scenario [10]. It requires
that, for a user’s sequence of queries, the cloaking region for each time must
consist the same set of users in the previous cloaking region. Wang proposes an
efficient solution to cloak not only a user’s accurate location but also speed and
direction [6], which is an improved version of cloaking box. These approaches
also degrade the quality-of-service (QoS) of LBS applications. Ji et al. propose a
privacy-preserving path predication algorithm so as to provide more guarantee
on privacy as well as less detour [11]. As a continuous work, we adopt the similar
idea in this work that predicates a secure path for the requester so as to avoid
insecure cases in advance. Differently, we consider a more critical scenario with
less users, where there may not exist a secure path, and promote cooperation
among multiple users for collective privacy.

Collaborative Location Privacy. The collaborative location privacy mech-
anism in a peer-to-peer environment is also related with our work. To protect
location privacy, a specific software should be installed on users’ portable intelli-
gent positioning devices. In Ferrer et al. proposed work [8], the software perturbs
each user’ location with Gaussian noise and broadcasts this fake position to oth-
ers. When a user invokes a LBS query, it collects other k− 1 nearest neighbours’
perturbed positions and computes the centroid of these positions as the request
location for LBS. Since the position of centroid can not be determined in advance
and may be far from the requester, the quality of service can not be guaranteed.
A little difference with the above method, Chow et al. propose a P2P spatial
cloaking algorithm [9] that computes a cloaking region via peer-to-peer users’
cooperation instead of sending the exact location to a LBS server. After forming
a group with k − 1 nearest peers, a user regards the region covering these peers
as the cloaking area. In case there is a malicious user in the group participating
the collaboration, the cloaking result would not be safe.

Shokri et al. propose a user-collaborative privacy preserving approach, Mo-
biCrowd, to avoid disclosing user’s location information to the LBS server [12].
A user can get the required LBS information from his neighbours, who send
the same quires to a LBS server in recent time and have stored the results in
their buffers. Otherwise, the user has to query the LBS server himself. The main
drawback of this proposal is that each user has to store large-scale data and
the provided information may not be applicable to the real-time context. Our
approach could overcome these drawbacks above and provide a higher guarantee
on location privacy.
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Location Based Recommendation. Our work is also related to the location
based recommendation, which focuses on calculating the most popular route.
For example, Wei et al. propose a route inference framework to mine the most
popular route by use of a large number of coarse GPS trajectories [13]. By
modelling each individual’s personal preferences and referencing opinions from
local experts, the location-based and preference-aware recommender system is
proposed to offer top-k ranked of routes for a particular user [14]. However, they
do not consider the real-time context and the privacy issue.

Taking into account the real-time taxi trajectories, Yuan et al. propose a
cloud-based driving direction system to provide a user with a fastest route to
a destination [15]. Given a user-location matrix, the inference model based on
HITS predicts the significance ranking of a physical location [16] by considering
the correlation between locations. This work does not consider the privacy issue
either.

3 The Coordinative Path Planning Algorithm

3.1 The Privacy Model

In this work, we adopt the widely used trusted third-party architecture, shown
as Figure 1, and the k−anonymity criteria for preserving users’ location privacy.
There are three parties in this architecture: LBS users, anonymity server, and
LBS server.

Mobile Users (Users): Users are associated with mobile positioning devices such
as mobile phones, PDA, or laptops etc. They can send LBS requests to the
anonymity server with their current physical locations. According to users’ pri-
vacy preferences, users can be classified into two categories: privacy-sensitive
users and ordinary users. We would only consider privacy-sensitive users in the
following discussion and adopt users for short. Each user is allowed to move in
a different speed.

Anonymity Server (A-Server): is a fully trusted third-party who is responsible
for protecting LBS users’ privacy while maintaining a certain extent of quality-of-
services (QoS). The channel connecting to users is assumed secure. When users
ask for LBS, the anonymity server receives their exact positions and anonymizes
them to get a cloaking region including at least k users before submitting to the

Fig. 1. The Trusted Third-party System Architecture
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LBS server. Even though an adversary gets these anonymized information, he
could not identify a specific user. For example, under k − anonymity criteria,
the adversary’s confidence of linking a real user to a requester is less than 1/k.

Location Based Service Provider (LBS server): A LBS server provides location
based services to its subscribed mobile users. When it receives a LBS request, it
processes the query according to the associated geographic position, either exact
point or cloak region. Then it returns the response to the requested user. LBS
server is not responsible for preserving privacy of the mobile users.

In this work, based on the above architecture, we propose the predication
based collective privacy solution. This solution focuses on the navigation ap-
plications, which are very popular in practice, and can be adaptive to other
related LBS with the characteristics of continuous LBS queries while users mov-
ing ahead. Under this scenario, a user may invoke a LBS request when going
along the path from his start to the destination. For a set of navigation requests,
the purpose of our approach is to provide more privacy guarantee without degra-
dation of QoS by holistically considering these requests. Firstly, the anonymity
server invokes the path planning algorithm to find a privacy-preserving path for
each request according to its preferences on privacy and distance, such as an
integer k as the k−anonymity criterion. In case no privacy-preserving path can
be found or when a user’s next step becomes insecure, A-Server would coordi-
nate multiple users to improve their collective privacy. This idea is inspired by
collective intelligence, where multiple individuals would all benefit more from
their collective activities than any one individual undertakes and solves it alone.

3.2 Problem Definition

In this subsection, we would first present the basic concepts and notions that
would be used in the following sections and give a formal definition of the problem
studied in this paper.

Map and Map Situation : The considered geographical region is called a map
in this paper, denoted as Map, generally referring to a city or a borough. For a
given map Map, map situation reflects the distribution of the dummy users [17]
and active users, who all participate for collective privacy.

User Request : Given a map Map, a Privacy-Preserving Navigation request
(PPN request for short) is in the form of 4-tuple < uid, Start,Destination, k >,
where uid is the identifier of the requester, Start ∈ Map, and Destination ∈
Map respectively represent the user’s start and destination for navigation, k is
an integer denoting the user’s privacy preference for k − anonymity criteria.

Problem Definition : For a set of PPN requests, donated as R={r1, r2, · · · , rn},
where ri represents a PPN request, our purpose is to find a k − anonymity
secure path for each request according to his privacy preference, donated by
kA−Path={p1, p2, · · · , pl}, where pi ∈ Map, such that no matter a LBS request
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Fig. 2. The path planning process

occurs at any point of the path, the cloaking region is k − anonymity secure.
Each edge< pi, pi+1 > connecting pi and pi+1 maps to a street between two
neighboring blocks.

3.3 The Coordinative Path Planning Algorithm

In this subsection, we propose the coordinative path planning algorithm among
multiple users so that they can benefit from each other. The main process of our
solution is shown in Figure 2. It includes two phases: the initial phase and the
adjustment phase.

In the initial-planning phase, for each PPN request, an anonymity server
firstly invokes the Personalized Path Planning method to find a privacy
preserving path according to the requester’s preferences on privacy, namely k for
k − anonymity criterion. We adopt the algorithm proposed in [11] to perform
the Personalized Path Planning, which is based on the D* path planning
algorithm for solving the robot movement problem. It integrates location privacy
with distance as the criteria for choosing a path. In our problem, for a PPN
request< uid, Start,Destination, k >, this method will find a privacy preserving
path from Start to Destination.

If there is not a secure path or an insecure cloaking region on next step dur-
ing user movement, the second phase of dynamic adjustment is invoked. The
anonymity server then coordinates all LBS users’ movement for higher collective
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privacy by finding an optimal next step for each user according to the current
map situation. We consider collective privacy from several aspects. The most
important aspect is to check whether a user is k-A secure. A user is said to be
secure if he is in a k − anonymity secure area satisfying his preference. Consid-
ering a set of requests, the more k-A secure users, the more collective privacy.
When the number of secure users is the same in two different choices, we consider
a higher entropy aspect. This is because user privacy is protected by confusing
a set of users in a cloaking area, the more users in a region, the more entropy.
Another aspect is distance since it is a very important issue in navigation ap-
plications. When the privacy under two choices is the same, the shorter one is
better. Besides, other user concerned aspects can be taken into account, such as
distance according to practical requirements.

The key of this process is the Collective Step Choose algorithm, shown as
Algorithm 1, it recursively searches the overall optimal choices. The recursive
part discusses the general situation that more than one users need to be taken
into account for path planning. It is recursively solved by the reduction to its
sub-problem on the number of users from n to n−1. To integrated above consid-
erations on collective privacy, we introduce the Dominate() function to make
a comparison between two choices and adopt BestOption to store the optimal
options for all users. OPT={opt1, opt2, · · · , optn} is used to store the candidate
choices for all users during each recursion, where opti is represented as current
choice of user ui. During each recursion, we will replace the BestOption with an
dominant OPT .

Algorithm 1. The Collective Step Choose

function The Collective Step Choose(cluster, n)
if (n = 1) then

for user u1’s each step option opt1 do
collective privacy calculation
if Dominate(BestOption,OPT ) then

update BestOption with OPT
end if

end for
else

for user un’s each step option optn do
The Collective Step Choose(cluster, n− 1)

end for
end if

end function

To reduce the practical complexity of this algorithm, we will classify all LBS
users on the user list into several clusters according to their positions. This is
based on the fact that only the geographically close users have opportunities to
be coordinated for collective privacy. The Collective Step Choose algorithm
would be invoked in each cluster and the map situation is updated periodically.
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(a)on simulated map (b) on real map

Fig. 3. The Coordinative path planning for multiple users

There are many efficient cluster algorithms can be used, such as DBSCAN [18],
which is omitted here.

4 Experimental Study

We prototype a system and perform a series of experiments to verify the proposed
solution on both simulated data and real data. The purpose of these experiments
includes two folds. One is to better understand the effectiveness on location
privacy protection after applying our method. Another is to study how well the
efficiency scales with different parameters.

4.1 Experiment Setting

The experiments were conducted on a desktop with Intel 3.10GHz CPU, 3.16G
memory and 500GB disk space. Its operating system is Windows 7.All experi-
mental results are the average values of more than ten times of program running.
LBS users are randomly distributed on the map, which is represented as a mesh
or grid and each cell of the mesh is regarded as a cloak region when a user
requests a location-based service.

To simulate practical instances in real life, we select the mesh size ranging
from 40*40 to 500*500. A set of dummy users are generated and distributed in
the mesh. Let Neach cell

dummy user denotes the number of dummy LBS users in each
cell. In Figure 3 (a), for illustrative purpose, we denote the cells with few dummy
users by the deeper colour. User requests are randomly distributed over the mesh.
The number of total PPN requests is denoted as |R|. The abbreviations of these
parameters would be used in the rest of this section.
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The practical map is selected from the OldenBurg County generated by the
well-knownThomas BrinkhoffNetwork-basedGenerator, which is widely adopted
in mobile application based research works. We clip one part from the map with
the size of 500x500 cells, approximately representing a geographical square of
4000m ∗ 4000m. The LBS users are randomly distributed in the this area. Each
user had its own start and destination in this region with a random speed. Dif-
ferent with the color setting in the simulated map, the while color denotes the
obstacles that can not be go through and the black lines denote roads or streets
in the county.

4.2 Evaluation Metric

In this subsection, we introduce some metrics to evaluate a path so as to overall
consider what a requester desires. In the experiment where these metrics are
used, the map is a mesh Mesh and a path is regarded as a sequence of cells from
a start position to a destination. Based on these metrics, we would evaluate the
proposed location privacy protection solution.

Success Rate: Success rate describes how well the k − anonymity criteria is
satisfied on this path. Given a map Mesh, an integer k for the k − anonymity
criteria and a path path on Mesh, the success rate is defined as the k-anonymity
private proportion of the whole path length.

K−anonymity path privacy: K−anonymity Path Privacy is a more fine-grained
evaluation of path privacy. Especially when there does not exist a k−anonymity
secure path, a user may choose a path with higher privacy. We define the privacy
for a given cloaking region ci as: H(ci) = −∑ηi

i=1(1/ηi ∗ log2(1/ηi)) = log2(ηi),
where ηi is the number of users in cloaking region ci(namely the size of the
anonymous request set). The K − anonymity Path Privacy (kA − Privacy) of
the path, donated as Hk(path)), is the average of all cell k-anonymity privacy
H(ci) on the path.

Detour rate: Detour rate expresses the tolerance a user would like to accept on
path detour. Given a mesh Mesh, and a path path, the detour rate is the ratio
of the number of additive cells that secure path is more than shortest path to
the shortest path length.

4.3 Experiments and Analysis

Since the primary purpose of our solution is to solve the collaborative privacy-
preserving problem in critical situations, we pay attention on the overall privacy
of all users. Figure 3 shows the path planning results of multiple users and each
dog-leg line denotes a recommended path for a user, where (a) is evaluated on a
simulated map and (b) is on a real map. In a color display, we can see that each
color line denotes a planned path for an individual.
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Table 1. The experimental settings of Figure 4

figure mesh size |R| Neach cell
dummy users k

(a) 400 [20..60] [0..2] [3..4]
(b) 400 10 [0..9] 4
(c) 1600 [20..60] [0..9] [3..9]
(d) 1600 [20..60] [0..9] [3..9]
(e) 3600 [1..80] [0..9] [2..6]
(f) 250000 [10..80] [0..9] [2..6]

Then we perform a series of experiments to quantitatively assess the effective-
ness of our method. The experiments settings are listed in table 1 and results
are shown in Figure 4. Since the semantics of success rate and path privacy are
different under various k values, we first evaluate the effectiveness on privacy
protection by setting a common k for collaborative users. Figure 4 (a) exams the
relationship between success rate on path privacy and the number of collabora-
tive users. The selected number of dummy users in each cell ranges with [0,2]
so as to reflect critical situations considered in the coordinative path planning
algorithm, namely a user’s k criteria is difficult to satisfy without collaboration.
The results show that the coordinative path planning algorithm (co − plan for
short in the Figure) generates better privacy preserving paths for users than
the personalized path planning algorithm (p − plan for short), especially with
the increase of k. Also we can see that the more users attend collaboration, the
higher the success rates it gets. This implies that in a critical privacy environ-
ment, users could together reach a high guarantee on privacy via collaborating
with each other on path planning. In Figure 4 (b), we exam the relationship
between the average success rate and user detour rate. The results show that
if users would like to detour more, they could be provided more guarantee on
privacy by both personalized path planning and coordinative path planning. But
the later has a higher success rate.

Considering in practice users may have different k as their preferences, we
then make comparison on common k cases and different k cases when applying
the coordinative path planning algorithm, shown in Figure 4 (c) and (d). The k
values for users are randomly distributed from 3 to 9 and the common k is set
their average value k = 6. The results in (c) show that the success rate in common
k cases is better than in the different k cases in coordinative path planning. It
is easy to understand that some large k is difficult to satisfy in most cases. And
they are all better than non-collaboration. The results in (d) show that there is
less difference between the coordinative planning and the personalized planning.
This is because some high k value may choose high privacy cell by path planning
and in a well situation a privacy preserving path can be found via personalized
planning. This again illustrates that the coordinative planning algorithm targets
the critical situations. Overall, the common k cases are better than different k
cases such that users can acquire more privacy via collaboration. In next section,
we would further discuss what a common k value is appropriate under a given
mesh situation for a high guarantee on users’ collective privacy.
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(a) success rate vs. |R| (b) success rate vs. detour rate (c) comparison on k

(d) comparison on k (e) on a simulated map (f) on a real map

Fig. 4. The coordinative path planning algorithm

Finally, we exam the efficiency of our algorithm. Figure 4 (e) shows the rela-
tionship between the execution time and the size of the PPN request set |R| on
a simulated map. Since the computational complexity of the algorithm without
any heuristic is exponential with the size of the PPN request set, the running
time increases fast with |R|. However, the running time of the optimized algo-
rithm with clustering heuristics is highly reduced on both common k cases and
different k cases. We also exam the efficiency on a practical map and present
the results in Figure 4(f). The results show that the running time is acceptable
for about 100 PPN requests. Actually, the selected resolution is very fine, in
which the size of a cell is less than 100 square meter. A practical application can
accept a much coarser resolution. The reason of selecting 500 ∗ 500 is to test the
computing pressure under such resolution since it can be applied to a whole city.

5 Conclusion

In this paper, we tackle the problem of collective privacy preserving in the
navigation applications. Based on the trusted third-party architecture and the
k− anonymity criterion, we propose a coordinative path planning algorithm for
multiple users’ collective privacy, which is suitable for the less secure situation.
For a set of user navigation requests, each user is recommended a privacy-
preserving path according to his preference, on which the k-anonymity is satis-
fied. The planned path may be adjusted when a user moves ahead such that the
total privacy of users is improved without degrading his privacy. This mechanism
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can benefit multiple individuals via their collective activities. A set of experi-
ments are conducted to evaluate the effectiveness and efficiency of our proposed
method on both simulated data and real data. Experimental results show that
our method provides higher privacy than users’ random movement without de-
grading the Quality of Service. In the future, we would consider to optimize the
collective path planning algorithm in directed graphs as well as to explore more
efficiency algorithms combined with classical algorithm in graph theory .
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