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ABSTRACT
Collaborative filtering plays an essential role in a recom-
mender system, which recommends a list of items to a user
by learning behavior patterns from user rating matrix. How-
ever, if an attacker has some auxiliary knowledge about a
user purchase history, he/she can infer more information
about this user. This brings great threats to user privacy.
Some methods adopt differential privacy algorithms in col-
laborative filtering by adding noises to a rating matrix. Al-
though they provide theoretically private results, the influ-
ence on recommendation accuracy are not discussed. In this
paper, we solve the privacy problem in recommender sys-
tem in a different way by applying the differential privacy
method into the procedure of recommendation. We design
two differentially private recommender algorithms with sam-
pling, named Differentially Private Item Based Recommen-
dation with sampling (DP-IR for short) and Differentially
Private User Based Recommendation with sampling(DP-UR
for short). Both algorithms are based on the exponential
mechanism with a carefully designed quality function. Theo-
retical analyses on privacy of these algorithms are presented.
We also investigate the accuracy of the proposed method and
give theoretical results. Experiments are performed on real
datasets to verify our methods.
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1. INTRODUCTION
A recommender system (RS) is designed to provide sug-

gestions on items to users, which is widely adopted in web
based applications. For example, e-commerce systems, such
as Amazon or Alibaba, often recommend goods to users for
commercial purposes. The core technology of these recom-
mendation systems is the collaborative filtering algorithm,
which recommends a list of items to a user by learning pat-
terns from user behaviors, which are stored in a rating matrix.

However, if an attacker has some auxiliary knowledge about
a user purchase history, he/she can infer other information
about this user. For example, Dwork proposes three types of
inference attacks on user purchase records [2]. Such attack
brings great threats to user privacy.

Privacy problem in recommender systems has attracted
much attention from both academia and industry. Recently,
the differential privacy method is introduced into recommen-
dation algorithms and gets acknowledgement due to its solid
theoretical results in [3, 8].

In this paper, we solve the privacy problem in recom-
mender system in a different way by applying the differen-
tial privacy method into the process of recommendation. We
consider some representative recommendation algorithms and
design two algorithms: Differentially Private Item-based Rec-
ommendation (DP-IR for short) and Differentially Private
User-based Recommendation(DP-UR for short), respectively.
Since the similarity measurement is important in collabora-
tive filtering, we investigate what kind of measurement is
suitable for differential privacy mechanism. Compared with
the previous work, we design a low sensitivity metric to mea-
sure the similarity between both items and users.

In DP-IR, for each item, it first computes a list of re-
lated items based on a rating matrix. Then for a target
user, it computes a list of top related items according to
his/her purchase history. We apply the exponential mecha-
nism into the selection of related items based on a carefully
designed similarity measurement with low sensitivity. Such
item list satisfies differential privacy and is released to the
user as recommendation. In DP-UR, for a specific user, it
first computes the similarity between users against their pur-
chase history in rating matrix and select a list of top related
users. Then it computes a score for each item by the sum of



weighed scores rated by the related users. The items with
high scores are selected as the recommendation list to the
user. We employ the exponential mechanism in the process
of choosing the related items.

Furthermore, we present theoretical analyses on privacy
of these algorithms. Motivated by the recommendation pur-
pose, we introduce a quantitative metric to verify the quality
of each protection mechanism, which evaluates the quality
of a recommended item with a score. Based on this qual-
ity function, we investigate the accuracy of the proposed
method and give theoretical results. Experiments are per-
formed on two real datasets to verify our methods.

The remainder of this is organized as follows. Section 1.1
presents related works and Section 2 introduces some basic
notions and theorems used in this work. The two proposed
differential privacy algorithms and theoretical analysis are
presented in Section 3 and 4, respectively. Section 5 dis-
cusses the experiments. Finally, we conclude and discuss
the future work.

1.1 Related Work
The most related work is the differential privacy method.

Differential privacy, coined by Dwork [2], quantifies the pri-
vacy with the principle that an algorithm output should pre-
vent any inference about the presence or the absence of a
record in the algorithm input. It requires that for any ran-
dom computation, the outcome should be nearly equal to
the results no matter a record is inside a database or not.
Taking the recommendation problem, a differentially private
recommended result is not sensitive to any single user record.
Thus, it is a perfect notion to prevent the inference attack
on a recommender system. If a user’s once purchase of an
item does not cause an obvious change of a recommended
list to that item, an attacker could not guess the purchased
item with a high confidence just by observing the change of
the output. There are two mechanisms to design a differ-
ential privacy algorithm [5], Laplace Noise Mechanism and
Exponential Mechanism [3],[8].

McSherry et al [3] address the privacy issue in recom-
mender systems using Laplace noise. They add Laplace
noise to the movie average rating, user average rating and
covariance matrix. Then the noisy matrixes are released and
used in the current recommender algorithms. In order to re-
duce the influence of one user record changing, a weight is
assigned to each user, say wu = 1/|eu| for user u, where
eu is the number of the rated items by u. Thus the covari-
ance matrix is computed as Covij =

∑
u wuruiruj , where

rui means the rating score on item i by user u. However,
it seems unreasonable since the more ’purchase activities’
a user performs, the fewer contribution to the covariance
matrix.

Moritz Hardt et al. [8] convert the recommendation prob-
lem into the Matrix Completion problem, which tries to re-
cover the missing entries of a matrix under a partially given
matrix with a subset of the entries are randomly sampled [8].
They give an (ε, δ) differential privacy approach to compute
the low rank approximations of large matrices that contain
sensitivity information about individuals. Each entry of the
matrix is independently perturbed by a noise. A low rank
approximation is then computed against the resulting ma-
trix.

Zhu et at. propose a truncated similarity function in pri-
vate neighbour selection so as to achieve differential privacy

for neighbourhood-based collaborative filtering [14]. For
any item i and two predefined parameters w ∈ (0, 1) and
k ∈ N+, the other items are divided into two sets C1 and
C2 according to their general similarities with i. Each item
in C1 has a larger similarity with i than sk(i, .) − w and
each item in C0 has a smaller similarity than sk(i, .) − w,
where sk(i, .) denotes the similarity between i and the kth

similar item. Then they adopt the exponential mechanism
to select the top k similar items with i under different pos-
sibilities. For C1, the items are directly selected based on
their similarities. Differently, for C0, all items are regarded
as a unit one and when it was selected, every item in C0 has
the same probability to be selected as the representative of
C0. However they do not give a detailed analysis about the
privacy, especially the relationship between privacy and the
parameter w. This would high influence the result since pri-
vacy depends on the setting of w. Also in the experiments
they do not consider the relationship between error and ε,
as well as the relationship between error and k.

Differently with the existing works, we employ the dif-
ferential privacy method in the process of recommendation
rather than on the data. An advantage of such choice is that
it does not generate accumulative error. Another difference
is that we present theoretical results on both privacy and
accuracy.

2. PRELIMINARIES
In this section, we introduce the basic notions and the-

ories used in this paper. Some of them are borrowed from
[5],[2],[4]. LetM denote a |U | × |I| user rating matrix, where
U is the user set and I is the item set in a recommender sys-
tem, Mui ∈ {1, 2, ..., R}, R ∈ N+ is the rating score on item
i ∈ I given by user u ∈ U .

2.1 Differential Privacy
Differential Privacy is a privacy notion by ’hiding’ one

user’s impact in the database [2] such that it can resist
the inference attack on individual privacy based on some
background knowledge. Suppose there is a query applied on
database D, a recommendation algorithm satisfying differ-
ential privacy principle guarantees that if one user record
is deleted or changed, the change of query result can be
bounded by a predefined parameter. So an attacker can not
make some inference by observing the change of released
recommended item list even he knows some information .

Let N denote the set of |U | × |I| matrices, in which non-
zero values are only allowed to occur in one row and its
Euclidean norm is at most R. Formally, N = {P : P ⊂
R|U|×|I| s.t there exists an index u ∈ [1..|U |], ||Pu||2 ≤ R
and ||Pj ||2 = 0,∀j 6= u} [8], where Pj is the jth row of P .
The semantics of notion N is that only one user’s record
exist in such a matrix. Other users’ records are left empty.

Definition 1. (Neighbouring Matrix) We say two user-

item rating matrices M,M
′
∈ R|U|×|I| are neighbours if

(M −M
′
) ∈ N (1)

Based on the semantics of N , M −M
′

is a matrix that
takes 0 at all entries except possibly in one single row, whose
Euclidean norm is bounded by R. That is to say the two
neighboring matrixes are different only on one user record.



Definition 2. ( (ε, δ)-Differential Privacy) A mechanism
A is (ε, δ)-differential privacy if for all pairs of neighbour-

ing rating matrices M and M
′
, and for all running events

O ∈ range(A):

Pr(A(M) ∈ O) ≤ exp(ε)Pr(A(M
′
) ∈ O) + δ

if δ = 0, A satisfies ε-differential privacy.

Definition 3. (Sensitivity) Given a quality function q:

(R|U|×|I|, I) → R, for any pair of neighbouring matrices

M,M
′
∈ R|U|×|I|, q(M, i) denotes the quality of recommend-

ing i ∈ I under M . Its l1 norm sensitivity is :

∆q = max
(M,M

′
)
||q(M, i)− q(M

′
, i)||1

Sensitivity is used to evaluate the error of the output of a
differential privacy algorithm compared to the optimal out-
put.

2.2 Exponential Mechanism

Definition 4. (Exponential Mechanism) Given a quality

function q : (R|U|×|I|, I)→ R, an input matrix M , ∆q is the
sensitivity of the quality function. the exponential mecha-
nism expo(M, I, q, ε) outputs i ∈ I with probability:

Pr[expo(M, I, q, ε) = i] =
εq(M, i)/(2∆q)∑
εq(M, i)/(2∆q)

satisfies ε-differential privacy.

The following combination theorem supports the case for
applying a differential privacy method several times.

Theorem 1. (Combination Theorem) [11] For all ε, δ, δ
′
,

the class of (ε, δ)-differential privacy mechanisms satisfy (ε
′
, kδ+

δ
′
)-differential privacy under k-fold adaptive composition for:

ε
′

=
√

2k ln(1/δ′)ε+ kε(eε − 1) (2)

Theorem 2. (Accuracy of the Exponential Mechanism)
[5] Given an exponential mechanism expo(M, I, q, ε). Let
q(M, I)OPT = maxi∈I q(M, i), IOPT = {i ∈ I : q(M, i) =
q(M, I)OPT }, i∗ = expo(M, I, q, ε) then we have:

Pr[q(M, i∗) ≤ q(M, I)OPT −
2∆q

ε
(log(

|I|
|IOPT |

) + t)] ≤ e−t

3. PROTECTION FOR ITEM-BASED REC-
OMMENDER SYSTEM

3.1 Item-based Recommender System and In-
ference Attack

There are several item-based recommendation algorithms.
Deshpande proposes an item-based top-N recommendation
algorithm [6]. Given a user-item rating matrix M and user
u with purchase record Iu = {Iu1, Iu2, ..., Iuw}, for each
item i ∈ Iu, it firstly calculates the similarity Sij between i
and other item j ∈ I as equation 3. Note that Mi and Mj

represent the ith and jth column in M , respectively.

Sij =
Mi ·Mj

R2
(3)

Algorithm 1 Anonpri(M, Iu)

1: Input: user-item rating matrix M , purchase record Iu
of user u, the length m of top related list.

2: C = ∅
3: for all i ∈ Iu do
4: for all j ∈ I do
5: Calculate Sij according to equation 3
6: end for
7: Select the top m items according to Si1 · · ·Si|I| and

put them into Li
8: end for
9: union the sets of related list Li for each item i ∈ Iu
C =

⋃
i∈Iu Li;

10: candidate item set C = C − Iu
11: score each item j in C by sj =

∑
i∈Iu Sij

12: Output: the top-k recommended items in C to u

We first present the basic recommendation algorithm with-
out privacy protection as shown in Algorithm 1.

For each item i ∈ Iu, a recommendation algorithm pub-
lishs the related list Li of i. For example, LibraryThing
publishes the related list for each book. The inference attack
is against the released related list. Supposing an attacker
knows some auxiliary information about a target user u, usu-
ally some part of the purchasing record Iu = {Iu1, Iu2, ..., Iuw}.
Suppose one user u interacts with the system within the time
period [t1, t2] and purchase item m, which results in m is
added to Iu. The covariance between m and all items in Iu
must increase. Thus, the rank of m in the related list to any
i ∈ Iu grows. Then the attacker can infer the purchasing
activity of u by observing these related lists of items in Iu.
If the same item m appears or moves up in the related-item
lists of a sufficiently large subset of the auxiliary items, the
attacker can infer that u bought m.

3.2 Quality and Sensitivity
Since the related list of an item is the essential notion in

a recommender system, we design the Differential Private
Item-based Recommender Algorithm with sampling (DP-IR
for short) on this list to solve the privacy problem. Al-
though many recommender algorithms are designed based
on the related list (without accessing other original data),
the succeeding procedures do not compromise the differen-
tial privacy. The theoretical proof would be presented.

Taking the semantics of related list into account, the ex-
ponential mechanism is adopted to the list generation. The
common challenge in exponential mechanism is to design an
appropriate quality metric, which should reflect the essen-
tial of the problem and be not sensitive to trivial change. So
we introduce the similarity function into DP − IR, as equa-
tion 3, which is consistent with user behaviours as other
widely adopted similarity computation but less sensitive.
We will analyze the rationality of this similarity measure-
ment in Section 3.6. Now we introduce a quality function.

Definition 5. (quality function and sensitivity) Given a
rating matrix M , an item i, the quality of the recommended
item j to i is given by:

q(M, i, j) = Sij (4)



Since Sij ∈ [0, 1], for any pair of neighbouring matrices

M,M
′
, the sensitivity of the quality function is given as:

∆q(M,i,j) = max
(M,M

′
)
|q(M, i, j)− q(M

′
, i, j)| = 1

From the above discussion, we can see that the similar-
ity changes at most 1 when one user updates his purchase
record.

3.3 Item-based Differential Privacy Recom-
mender Algorithm

Based on the above notions, we design an Item-based Dif-
ferential Privacy Recommender Algorithm with sampling
(DP-IR for short). It consists of two steps:

• Step 1: Given a user u with purchase record Iu =
{Iu1, Iu2, ..., Iuw}, we sample each user with proba-
bility p in M , and get the new user-item rating ma-
trix T . Then we design a differential privacy algo-
rithm DP −A1(T, c, δ0, Iu) → L|Iu| to compute a se-
ries of related list Li for each item i ∈ Iu based on T ,
which satisfies (c, δ0)-differential privacy. The whole
process is algorithm DP −A′1(M, c, δ0, Iu, ε) (based
on the original dataM) satisfying (ε, δ)-differential pri-
vacy,where δ = εδ0/2.

• Step 2: We recommend k items to user u according
to the related lists Li got by step 1 and the purchase
record Iu of user u, denoted by R(L, Iu).

We will show that the whole algorithm DP-IR:R|U|×|I| →
Ik satisfies (ε, δ)-differential privacy, where δ = εδ0/2.

3.3.1 Differential Privacy Related Items Recommender
Algorithm

Firstly we present the differential privacy algorithm for re-
lated lists recommendation Algorithm DP −A1(M, c, δ0, Iu),
shown in Algorithm 2. Given a user u with purchase record
Iu = {Iu1, Iu2, ..., Iuw}, we recommend m related items
to u. Algorithm DP −A1 applies exponential mechanism
m|Iu| times. Suppose that we expect a (c, δ) differential

privacy, in each fold we should set ε
′

= c

2
√

2m|Iu| ln (1/δ0)

according to Theorem 1.

3.3.2 Item-based Differential Privacy Recommenda-
tion with Sampling

Since the number of users is very large in a dataset, to re-
duce the complexity of computing item similarity S(i, j), we
sample users for calculation. Then the recommendation is
based on this part of users as well as their purchase records.
The sampling process plays an important role in our exper-
iment based on the Netflix data set.

We construct an algorithm DP −A′1 to recommend the
related lists to user u based on purchase history Iu, given by
Algorithm 3. We sample each user with probability p = ε

2
to get the new user set T and return DP −A1(T ). We will

show that DP −A
′
1 satisfies (ε, ε · δ0/2)-differential privacy.

After DP −A
′
, we apply Algorithm R(L, Iu) : L|Iu| →

Ik given by Algorithm 4 to recommend top k related
items to u based on L.

3.4 Analysis of Privacy
In this section, we analyse the privacy of DP-IR. Firstly

we give some theorems.

Algorithm 2 DP −A1(M, c, δ0, Iu)

1: input: user u’s purchase record Iu, user-item rating
matrix M |U|×|I|, Mui ∈ {1, 2, .., R}, privacy paramaters
(c, δ0), parameter m for the number of items in each
related list

2: for all i ∈ Iu do
3: for all j ∈ I do

4: S(i, j) =
∑

u∈U Mui×Muj

R2

5: end for
6: Initialised: Li = ∅, I = I
7: for all t = 1 : m do
8: Sample an item r ∈ I with probability:

exp ε
′
S(i,r)
2∆∑

j∈I exp ε
′
S(i,j)
2∆

, where ε
′

= c

2
√

2m|Iu| ln (1/δ0)
, ∆ = 1

9: Li = Li ∪ r, I = I− {r}
10: end for
11: end for
12: Output:L1,L2, ...,L|Iu|

Lemma 1 (Privacy of Sampling). [9] Given a database
D, suppose A(D) is a (1, δ0)-differential privacy, we design

an algorithm A
′

as: Firstly, we construct a set V ⊂ D by
selecting each element from D independently with probabil-

ity ε∗; then return A(V ). So for any ε∗ ∈ (0, 1),A
′
(ε,D)

satisfies (2ε∗, ε∗ · δ0) differential privacy.

Then the following theorem can be derived directly :

Theorem 3 (The Privacy of Algorithm DP −A
′
1 ).

Algorithm DP −A
′
1 is (ε, εδ0/2)-differential privacy.

And we apply R(L, Iu) to the output of DP −A
′
1, we will

show that the Post-Processing doesn’t make it less differen-
tially private.

Theorem 4 (Privacy of Post-Processing). [12] Let

A′ : R|U||I| → L|Iu| be (ε, δ)-differential privacy and let

f : L|Iu| → Ik be an arbitrary function.Then:

f ◦ A
′

: R|U||I| → Ik

is (ε, δ)-differential privacy

It indicates that if the later procedure does not access the
matrix M and just be applied on the output L derived from
the former procedure, then it reserves differentially private..
That’s to say even we apply algorithm R to the output of

DP −A
′
, we don’t make the whole algorithm less differen-

tially private. Finally, we get the following theorem:

Theorem 5 (Privacy of DP-IR). DP-IR satisfis (ε, δ)-
differential privacy, where δ = εδ0/2

Thus Theorem 5 can be derived directly from Theorem
3 and Theorem 4.

3.5 Analysis of Error
Now we analyze the accuracy of DP-IR. The error comes

from two parts: sampling (error1) and the exponential mech-
anism (error2). Firstly we give the definition of (τ, θ)-accuracy.



Algorithm 3 DP −A
′
1(M, c, δ0, Iu, ε)

1: input: user u’s purchase recoding Iu, user-item rating
matrix M |U|×|I|, Mui ∈ {1, 2, .., R}, privacy paramater
(c, δ0) where c = 1, parameter ε, and parameter m for
the number of items in each related list.

2: Sample each user with probability p = ε/2 and get the
new user set V .

3: for all i ∈ Iu do
4: for all j ∈ I do
5: calculate

S
′
(i, j) =

∑
u∈V Mui ×Muj

R2
× 1

p

6: end for
7: Initialised: Li = ∅, I = I
8: for all t = 1 : m do
9: Sample an item r ∈ I with probability:

exp ε
′
S
′
(i,r)

2∆∑
j∈I exp ε

′
S
′
(i,j)

2∆

. where ε
′

= c

2
√

2m|Iu| ln (1/δ0)
, ∆ = 1

p

10: Li = Li ∪ r, I = I− {r}
11: end for
12: end for
13: Output:L = {L1,L2, ...,L|Iu|}.

Algorithm 4 R(L, Iu)

1: input: user u′s purchasing record Iu, and the published
related lists L = {L1,L2, ...,L|Iu|} ∈ L|I|,parameter k
for the number of recommended items

2: output: the recommended item list l ∈ L for u
3: For every item t ∈ Iu, put all items j ∈ Lt to C
4: Remove the items u already bought from C
5: For every item j ∈ C, count the frequency that it ap-

pears in L and order the items in descending order ac-
cording to the frequency.

6: Select the top k items in C as the recommended item
list l for u

Definition 6 (Error of Algorithm). For an item i,

suppose DP −A
′
1 recommends item r∗ in the tth inner- rec-

ommendation. The error of the recommendation is defined
as:

error = |S(i, i∗)− S(i, iOPT )| (5)

The error of algorithm DP −A′1 is defined as the difference
between the final output and the optimal output. Algorithm
DP −A′1 is defined (τ, θ)-accuracy, if the error satisfies:

Pr[error ≥ τ ] ≤ θ (6)

Lemma 2. (Additive Chernoff Bound) [10]
Let X1, X2, ..., Xn be independent random variables, where

Xi ∈ (0, 1), ∀i ∈ [1..n]. Let X̄ = 1
n

∑n
i Xi denote their

mean, and let µ denote their expected mean. Then

Pr[X̄ − µ ≥ α] ≤ exp (−2α2n)

and also

Pr[µ− X̄ ≥ α] ≤ exp (−2α2n)

The error of an algorithm evaluates the distance with the
optimal result. Based on this definition and the lemma, we
propose the following theorem.

Theorem 6 (Accuracy of DP-IR). For an item i, when

algorithm DP −A
′
1 recommends an item to it, DP-IR is

(O(

√
m|Iu| ln (1/δ0)(log |I|+t)+

√
|U| ln |U|

ε
), 1
|U|2 + e−t)-accuracy

Proof. Let Y = {Y1, Y2, ..., Y|U|}, denote the variable
with probability distribution:

Yu =

{
Mui×Muj

R2 p

0 1-p

Mui is the rating of u to i, Yu ∈ [0, 1]. In DP −A
′
1 we

sample each user with probability p and get the user set V ,
then calculate

S
′
(i, j) =

∑
u∈V Mui ×Muj

R2
× 1

p

, also S
′
(i, j) can be addressed as 1

p

∑
u∈U Yu. Let E(Y )

denote the expected mean. We have

E(Y ) = p

∑
u∈U Mui ×Muj

R2|U | =
pS(i, j)

|U |
Then we have

Pr[
∑
u∈U

Yu/|U | − E(Y ) ≥ α] ≤ exp (−2α2|U |) (7)

and Pluging in S
′
(i, j) and S(i, j), we get

Pr[S
′
(i, j)− S(i, j) ≥ |U |α

p
] ≤ exp (−2α2|U |) (8)

In general, |U | is large, thus if we let exp (−2α2|U |) ≤
1
|U|2 , we can make sure that the error is bound with great

probability, and we get α =
√

ln |U|
|U| . Thus the error is:

error1 = |U|α
P

=

√
|U| ln |U|
p

=
2
√
|U| ln |U|
ε

We have: Pr[S(i, j) − S
′
(i, j) ≥ 2

√
|U| ln |U|
ε

] ≤ 1
|U|2 Here

S
′
(i)OPT = maxj∈I S

′
(i, j), iOPT = {j ∈ I : S

′
(i, j) =

S
′
(i)OPT }. Note that ∆q = 1/p = 2/ε, and ε

′
= 1

2
√

2m|Iu| ln (1/δ0)
,

then according to Theorem 2, we get:

Pr[s
′
(i, r∗) ≤ S(i)

′
OPT−

8
√

2m|Iu| ln (1/δ0)

ε
(log(|I|)+t)] ≤ e−t

(9)
Note that we should define the error as:

error = |S(i, i∗)− S(i, iOPT )| (10)

i∗ is the item got by algorithm DP −A
′
1. Note that it’s pos-

sible that S
′
(i, r) = S(i, r) + error1 and S

′
OPT = S(i)OPT −

error1. The total error is the sum of the error produced by
sampling(error1) and exponential mechanism(error2).

error =
8
√

2m|Iu| ln (1/δ0) + 4
√
|U | ln |U |

ε

And one of the two errors exceeds the bound the total error
will exceed error. Thus,

Pr[E1 > error1 ∨ E2 > error2] ≤ Pr[E1 > error1] + Pr[E2 > error2]

=
1

|U |2
+ e−t

(11)



Thus we have :
let Γ = S(i, iopt)− S(i, i∗)

Pr[Γ >
8
√

2m|Iu| ln (1/δ0)(log |I|+ t) + 4
√
|U | ln |U |

ε
]

≤
1

|U |2
+ e−t

(12)

Note that the main part of the error is
4
√
|U| ln |U|
ε

, com-

pared with the range [0, |U |],
√

ln |U|
|U| ×

4
ε

will be less than 1

when ε > 4
√

ln |U|
|U| .

3.6 Discussion on Quality Function
One key point in Item-based collaborative filtering is the

item similarity measurement. There are three aspects should
be considered when choosing a quality function. Firstly, a
good similarity metric should reflect the essential of item
correlations, which should be learned from user behaviours.
In equation 3, the molecular reflects the fact that the more
users who purchase both items i and j and give a high rating,
the more similar i and j. Secondly, a good metric should
not be sensitive to trivial change. Because in a differential
privacy method, the accuracy is related to the sensitivity of
the function. More details can be got from Theorem 2.
Considering our similarity function, the biggest difference is
only 1/|U |, which is very small since the number of users is
very large. Thirdly, the sensitivity is expected to decrease
along with the increasing number of users. There are some
other popular measurements to evaluate item similarity [7].
We would make some comparisons.

• The simplest and most common one is the Euclidean
distance:

S(i, j) = (

|U|∑
u=1

(Mui −Muj)
2)1/2 (13)

Here, S(i, j) ∈ [0,
√
|U |R] and its most change is R

on one change of a user, which derives the (1/
√
|U |)-

sensitivity. Thus we can define

q(M, i, j) = S(i, j) =
(
∑|U|
u=1(Mui −Muj)

2)1/2√
|U |R

(14)

• Another common approach is the cosine similarity:

cos(i, j) =
Mi ·Mj

||Mi||||Mj ||
(15)

cos(i, j) ∈ [0, 1]. If one user changes his input , the
quality score changes 1 at most, which derives the 1-
sensitivity. Cosine similarity is not a feasible quality
function in differential privacy. Firstly, according to
Theorem 2, the error will be at almost 2

ε
log |I|, which

is over the max value of its range; Secondly, its sensi-
tivity can not decrease with the increasing of the user
number. And the weakness of Pearson Coefficient is
similar to cosine similarity.

In our experiments , we compare some comparison
with other similarity. And, we find that the Dot Simi-
larity in equation 3 performs better in the recall rate.

4. PROTECTION FOR USER-BASED REC-
OMMENDER SYSTEM

4.1 User Based Recommender System and In-
ference Attack

The user based recommendation is another representative
algorithm, which can be formalised as two steps [7]. For
some user u, it firstly finds the k most similar users set
Ku = {Uui, Uu2, ..., Uuk} according to some similarity met-
ric (e.g., the Pearson correlation coefficient or cosine simi-
larity). The similarity matrix between users is represented
as S, where each entry Suv denotes the similarity between
users u and v. Then for each user u, it predicates u’s rating
on item i ∈ I according to purchase histories of these k-
nearest neighbours. The predicting score of user u for item

i can be computed by rui =
∑

n∈K SuvMvi∑
n∈K Suv

. Items are ranked

in descending order according to the predicating score. The
higher the score, the more user u is preferred.

Suppose that an attacker already has some background
about a target user u′s purchase history, namely the n items
and ratings by user u recorded in Iu = {Iu1, Iu2, ..., Iuw}.
The purpose of this attack is to obtain knowledge about
other unknown items that were also bought by u. The attack
procedure includes two steps. Firstly, the attacker creates k
sybil users and populates each sybil user’s purchase history
with his background information about u. Then the attacker
tries to infer u’s other purchasing record by playing as one
of the sybil users and inspecting the recommended list. Any
item in the ahead of this list might be bought by u with high
probability.

4.2 Preference and Sensitivity
Given a user u with purchase record Iu = {Iu1, Iu2, ..., Iuw},

we recommend k items to u based on the neighbours of u.
Firstly we define the similarity between two users. A user u
vector ru ∈ {1, 2, ..., R}|I| is chosen from the rating matrix,
where rui = Mui if user u has rated item i, and 0 other-
wise. Obviously, rui ∈ {0, 1, ..., R}. Let r̂u =

∑
i∈I

rui/|I| be

the average rating of u; Let Iuv = Iu
⋂
Iv. The similarity

between two users u and v is computed as

S(u, v) =

∑
i∈Iuv

(rui − r̂u)(rvi − r̂v)√∑
i∈Iuv

(rui − r̂u)2
∑
i∈Iuv

(rvi − r̂v)2
(16)

Based on this similarity, we introduce the user preference
function q(M,u, i), which evaluates how much a user prefers
an item.

Definition 7. (preference function and sensitivity) Given
a user set U , an item set I, a user similarity matrix S and a
rating matrix M (Mui ∈ {0..R}, R ∈ N+), for a user u ∈ U ,
u′s preference on item i ∈ I is computed by:

q(M,u, i) =

∑
v∈U S(u, v)Mvi

R
(17)

Generally speaking, the higher this score , the more user u
prefered. For any pair of the neighbouring matrix M and

M
′
, the sensitivity of user preference function is defined,

∆q = max
(M,M

′
)
|q(M,u, i)− q(M

′
, u, i)| = 1 (18)



Algorithm 5 DP −A
′
2(M, c, δ0, Iu, k, ε)

1: input: user-to-item rating matrix M , user u’s purchase
record Iu, item set I ,the privacy parameter (c, δ) where
c = 1, k is the number of recommended items and ε.

2: Sample each user with probability p = ε/2 and get the
new user set V .

3: for all v ∈ V do
4: Calculate the similarity between u and v by

S
′
(u, v) =

∑
i∈Iuv

(rui − r̂u)(rvi − r̂v)√∑
i∈Iuv

(rui − r̂u)2
∑
i∈Iuv

(rvi − r̂v)2

5: end for
6: for all i ∈ Iu do
7: predict the rating of u to i by

q
′
(M,u, i) =

∑
v∈V S

′
(u, v)Mvi

R
× 1

p

8: end for
9: Initialised: lu = ∅, I = I

10: for all t = 1, 2, ....k do
11: select one item r ∈ I with probability

exp (ε
′
q
′
(M,u, r)/(2∆q

′ ))∑
i∈I exp (ε′q′(M,u, i)/(2∆q

′ ))

where ε
′

= c

2
√

2k ln (1/δ0)
,∆q

′ = 1/p

12: lu = lu ∪ r, I = I− {r}
13: end for
14: output the recommended item list lu;

4.3 Differential Privacy User-based Recom-
mender Algorithm

Also there are a large number of users, thus when we pre-
dict a rating we must sum the product of the similarity and
rating by |U | times. We sample each user with probability p
recorded in V , then, we apply an exponential algorithm to
get the recommended item list. The recommender algorithm

based on sampling DP −A
′
2(M, c, δ0, Iu, ε) is addressed as

Algorithm 5.

Theorem 7. DP −A
′
2(M, c, Iu, ε) is (ε, εδ0/2)-differential

privacy.

Proof. : It can be derived directly from Theorem 1
and Lemma 1

We can regard the variable as Y = {Y1, Y2, ..., Y|U|},Yi ∈
[0, 1] with probability distribution

Yv =

{
S(u,v)×Mvi

R
p

0 1-p

Suppose DP −A
′
2 recommends item i∗ in tth fold, and iOPT

be the optimal item in tth fold. And q(M,u, i) can be de-
scribed as q(M,u, i) =

∑
u∈U Yu. Then according to the

Additive Chernoff Bound, the error deduced by sam-

pling is Pr[q
′
(M,u, i)− q(M,u, i) ≥ α|U|

p
] ≤ exp (−2α2|U |)

Let exp (−2α2|U |) ≤ 1
|U|2 we get error1 =

√
|U| ln |U|
p

=

2
√
|U| ln |U|
ε

And the error deduced by exponential privacy is
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Figure 1: Experiment result

error2 =
8
√

2k ln (1/δ0)

ε
The total error will be

error =
4
√
|U | ln |U |+ 8

√
2k ln (1/δ0)

ε

Similarly we have :Γ = S(i, iopt)− S(i, i∗)

Pr[Γ >
8
√

2k ln (1/δ0)(log |I|+ t) + 4
√
|U | ln |U |

ε
]

≤
1

|U |2
+ e−t

(19)

Theorem 8 (Accuracy of DP-UR). DP-UR is

(O(

√
k ln (1/δ0)(log |I|+t)+

√
|U| ln |U|

ε
), 1
|U|2 + e−t)-accuracy

5. EXPERIMENT

5.1 The Data Set
The data set is from ‘Alibaba Big Data Competition’,

which has 182881 records with 9531 items and 884 users.
We divide the data set into training set and test set. The
test set contains the purchase records of dozens of the users
randomly sampled from the data set. Each record in the
dataset is in the form of (uid, iid, operation, time). The op-
erations include browse, collect and buy, which are mapped
to the rating score of a user as 1, 2 and 3. The another data
set comes from the Netflix data set. training − set.tar is a
tar of a directory containing 17770 files, one per movie.

5.2 Experiment for DP-IR
In this section, we verify the effectiveness of DP-IR from

three aspects. One is to quantitatively examine the recom-
mended results against the metric of quality score and verify
the relationship between the error and ε . And in order to
show the quality of recommender result directly, we also cal-
culate recall and show the relationship between recall and
ε. We make comparison between Dot similarity and another
representative similarity measurement since the adoption of
similarity metric has great influence on sensitivity.

Recommendation Error vs. ε. This experiment tests
the relationship between the recommendation error and the



privacy parameter ε, since the ε is determined by the sam-
pling probability p, thus also, it’s the relationship between
error and the number of users . The parameter ε is selected
from {2, 1, 0.2, 0.1, 0.02} respectively , accordingly p is se-
lected from {1, 0.5, 0.1, 0.05, 0.01} respectively. The param-
eter setting in this experiment is m = 50. Given a ε, for each
user u in the test set TU , each item i ∈ Iu, the related list

generated by DP −A
′
1 is denoted by Li. The quality of one

related list Li is calculated by
∑
j∈Li

Sij , and score1 is the

mean of these quality ,score1 =
∑

u∈TU

∑
i∈Iu

∑
j∈Li

S(i,j)∑
u∈TU |Iu|

.

Also we get the optimal related list lopti for each i ∈ Iu by
Algorithm 1 Anonpri(M, Iu).

And score1 =

∑
u∈TU

∑
i∈Iu

∑
j∈Lopt

S(i,j)∑
u∈TU |Iu|

Then for this ε,

the error is computed as error = score1 − score2.
The result based on Netflix dataset, as depicted in Figure

1(a), shows the average error decreases with the increasing
size of the training set. This illustrates that a larger popu-
lation bring more accuracy on recommendation.
Recall vs. ε. In order to understand the recommended
result directly, the recall score is adopted here as an evalu-
ation. Let S1 be the item set purchased by u actually , S2

be the item set that we recommend to u, and S3 = S1 ∩ S2,
recall = S3

S1
. Obviously the smaller the error the higher the

recall. As shown in Figure 1(b) , the recall increases with
the increasing of ε.

Dot Similarity vs. Euclidean Distance-based Sim-
ilarity and Cosine Similarity. To verify our similarity
metric, some comparisons are made against the Euclidean
Distance-based Similarity and Cosine Similarity based on
the ’alibaba’ data set. The recall score is adopted here as
an evaluation. The parameters are set ε = 2, accordingly
p = 1, respectively. The results, depicted in Figure 1(c) ,
show that the recall under our method is better than with
Euclidean Similarity and Cosine Similarity and Algorithm

DP −A
′
1, though the result based on Cosine Similarity in

Algorithm Anonpri is the best, however it’s recall is 0 in

Algorithm DP −A
′
1.

5.3 Experiments for DP-UR
In this section, we verify the effectiveness of DP-UR. We

show the relationship between the average quality score of
the recommended item list to user u and ε .

This experiments verify the relationship between the com-
petitive parameters accuracy and privacy. For each user u
in the test set we recommend 200 items in list L∗ by DP-
UR, and calculate the quality score of the list we recommend
to u similarly to that in the last section The quality error
is calculated as error = score1 − score2. From the results
in Figure 1(d), we can see that the average error scales
inversely with the increasing ε. This illustrates that the
quality of the recommender result can be improved with the
increasing number of user.

6. CONCLUSION
We solve the inference attack problem in recommender

system by applying the differential privacy method into the
procedure of recommendation. We design two differentially
private recommender algorithms, named DP-IR and DP-UR
for item based recommender system and user based based
recommender system, respectively. Algorithms are based on
the exponential mechanism with a carefully designed qual-

ity function with sampling. And we discuss what kind of
similarity measurement are appropriate in differential pri-
vacy. Theoretical analyses on privacy of these algorithms
are presented. We also investigated the accuracy about the
proposed method and give theoretical results. Experiments
are performed on real dataset to verify our methods, which
show that the recommended results get improved with the
increasing of the number of users.
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