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Abstract—In this paper, we focus on the link predication
problem in social networks. Our approach is based on the
observation that there is a large amount of social behavior taking
place every day which contains substantial information about
user intrinsic characteristics that influence the dynamics of social
networks. In order to obtain a deeper understanding of user
behavior, we introduce the concept of latent factor to capture the
motivation behind social activities. Since user relationships are
often asymmetric, we also take into account bilateral user wishes
with respect to friend as preferences, which is beyond traditional
approaches or overall measurements. Two combination modes
are proposed, independent fusion and interdependent fusion, to
integrate these hybrid metrics with traditional measurements
for link inference. In order to quantify the sensitivity of each
element in metrics we use information theory. Experimental
results on several real datasets show that our approach has better
performance than previous methods.

I. INTRODUCTION

Web based social network services are today very popular.

Social networks are usually represented as graphs, in which a

node represents a person associated with some attributes and

a link represents a relationship between users. Link inference

is a critical technique in social network analysis in order to

find missing links or predict links that will appear in future,

which is often provided to users as a friend recommendation

services.

Several approaches have been proposed for link inference

based on the analysis of the network structure. Such ap-

proaches compute a score as the closeness of nodes based

on common friends between two nodes [9] or the paths

connecting them [1]. However, such approaches do not take

into account node attributes that do influence user social

activities. For example, there are 1.2 billion registered users

on Facebook who submit personal information such as name,

age, sex, occupation, education, hobby, etc. To take node

attributes into account, some models use node attributes, such

as location [23], social circle [29] or interest group [11], as

a reference for link inference [5]. Since this information is

static, such approaches have limitations in reflecting node and

link changes in social activities. However, the dynamics is

the most important characteristic of social services. For ex-

ample, according to statistics by Facebook1, over 802 million

1https://zephoria.com/social-media/top-15-valuable-facebook-statistics

people log in the system daily, over 300 million photos are

uploaded, 510 comments are posted, and 293,000 statuses are

updated every minute. A variety of research efforts have thus

been devoted to analyze these social behaviors [25] such as

common topics or public opinion detection. However, such

approaches focus on group activities and do not consider user

personalized requirements on social services. Since users often

have preferences on making friends and social activities, these

methods are not appropriate for link inference.

Another shortcoming of behavior analysis techniques is that

only explicit social contents are considered, such as posts,

comments, links of web pages etc., while the intrinsic factors

behind social activities are rarely investigated. Although such

explicit information is very useful, it is not considered to

be always reliable as network topology. However, user social

behaviors contain much intrinsic information on people social

purposes or emotion, which are stable and reliable. The goal of

our work is thus to investigate intrinsic characteristics and user

social preferences that influence links. Our novel contributions

can be summarized as follows.

First, we introduce the concept of latent factor to analyze

user behavior. According to psychology and social science,

social behaviors are dominated by some latent factors such

as cognition, emotion, interest, desire, demand, ideals, beliefs

and social values. 2 We then extract the intrinsic factors behind

social activities as a metric to assign a score to a potential

link. Second, we show how user personalization can be taken

into account in link inference. On one side, an entropy based

metric is introduced to quantify user social bias on friend

attributes and behaviors. On the other side, user bilateral

wishes are taken into account when evaluating a link, which

is a novel metric with respect to conventional link inference

approaches. Third, we propose two combination methods,

referred to as independent fusion and interdependent fusion, to

semantically combine these hybrid metrics with the traditional

network structure based metrics for link inference.We apply

information theory techniques to quantify the sensitivity of

each considered metric. A potential link is then quantitatively

formalized as the closeness between users, which is measured

against our metrics. Finally, experiments are performed on

several real data sets. The results show that our metrics

2http://wiki.mbalib.com/wiki/Behavior
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outperform previous methods.

The rest of the paper is organized as follows. Next section

discusses related work. Then, we formally define the link

inference problem and present an overview of our approach.

In sections IV and V, we discuss user preference on friend

attribute and social behavior, as well as related metrics, respec-

tively. In section VI we propose two strategies for combining

multiple metrics. Section VII presents experimental results on

real datasets. Finally, we conclude the paper.

II. RELATED WORK

Link inference, also called link predication, has attracted

increasing attention in recent years. The simplest framework

for most link inference approaches is based on the similarity

between two users [28]. The more similar the two users are,

the more likely is that there exists a link between them.

These similarity-based link inference methods can be further

classified as structure-based and node-based.

Structure-based Link Inference Methods. In social net-

works, the structural features of networks are often public and

easy to obtain, which explain why many methods mainly focus

on structural similarity. The most popular method is Common

Neighbors (CN) [17]. The approach by Newman is based on

the fact that a positive correlation exists between the number

of common neighbors and the probability that they will

collaborate in the future [20]. Since the neighbors can reflect

user preference and affect user behavior, several approaches

have extended the metric by Newman by taking into account

various factors, such as CN normalization, topological overlap,

2-distance friends [2], [18].

Besides neighbor information, the paths connecting two

users are also used for link inference. The number and length

of such paths are both important factors. The more paths exist

and the shorter each path, the higher the probability of a link.

Katz et al. compute all paths between two nodes and restrict

the influence of a long path by an exponential factor [10].

Papadimitriou et al. compute a possible link based on counts

of varying length paths connecting two users [21]. Other

approaches adopt different kinds of methods for calculating the

length of paths, such as random walk [13], [8], co-occurrence

probability [27], Markov random network [4].

Many methods recent treat the link inference problem as

a clustering problem, according to which users classified

in the same group have higher probability of connecting

[15]. Machine learning methods are used for clustering users

into different groups [34], such as logistical regression [12],

support vector machine (SVM) [16] and deep belief network

[14].

As these methods only analyze the network structure for

link inference, they are unable to leverage the wealth of in-

formation about node attributes and dynamic social activities,

which are inherent characteristics influencing user links.

Node-based Link Inference Methods. As individuals tend

to communicate with other individuals that have similar char-

acteristics, such as educations or interests, several methods

take such characteristics into account in order to compute

similarities between users. Some methods utilize user interest

to evaluate user similarity [29], [11]; location [23] and the

set of keywords[3] are also considered important attributes to

infer social ties. Some methods thus combine attribute based

evaluation with network structure analysis [7], [30]. Gong et al.

propose an attribute-augmented social network model which

considers each attribute as a node and the user who holds

this attribute is added via a link to this attribute node. Based

on such extended social network structure, such method has

higher accuracy [5]. However, these methods consider neither

the dynamics of social behaviors nor user preferences, which

are actually important characteristics of social networks and

thus critical for improving the performance of link predication.

Besides, user behaviors can also indirectly reflect user

preferences. Sun et al. propose a topic modeling framework

for social networks, which considers both text and structure in-

formation [25]. Qiu et al. calculate temporal features from the

time series to characterize behavior evolution, which is used to

improve the link prediction accuracy [22]. But such methods

focus on topic detection or public opinion mining, in which

common interests are the main target and user personalized

requirements are not taken into account. Also they only utilize

explicit social contents, such as posts, comments, and links

to blog and web pages, without considering intrinsic factors

behind social activities, which are the real factors affecting

user social behaviors.

III. PROBLEM AND FRAMEWORK

A social network is represented as an undirected graph

G〈V,E,A,B〉, where V is the user set, E = {(u, v)|u, v ∈
V } represents the set of user relationships, A and B represent

user attributes and social behavior, respectively. Each user

u ∈ V is associated with a set of attributes; such set is formal-

ized as a vector Au = {a1, a2, ..., an}, where n represents the

number of total attribute values. Γ(u) = {v ∈ V |(u, v) ∈ E}
is set of friends of u computed on E. The user behavior B
can be regarded as two parts, namely content and interaction,

which respectively represent open social activities, such as

uploading or sharing logs, photos etc., and interactive actions,

such as like, visit, comment, retweet etc., that target a specific

user.

PROBLEM 1: Given a social network G〈V,E,A,B〉, a user

u ∈ V , an integer k and a quantitative metric Θ, the user link

inference problem (LIP for short) is to find a set of k users

P k
u = {vi|vi ∈ V, i ∈ [1, k], (u, vi) �∈ E} such that ∀vi ∈ P k

u

and ∀v′ ∈ V ∩ v′ �∈ P k
u , Θ(u, vi) > Θ(u, v′) holds.

The LIP problem is to find the top k probable friends for

u against a metric. The key to this problem is to design

an appropriate metric to capture the intrinsic factors that

influence social links. In this paper, we take into account user

attribute, social behavior and network structure to understand

user social activities for link inference. Different metrics are

created against these elements and denoted by Θa, Θb and Θs,

respectively.

User preferences are considered from two aspects. The

first aspect concerns user bias on friend attributes, which
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can be learned from current links and social activities. The

quantitative biased weight on each attribute value is computed

by means of population probabilities or entropy methods. The

second aspect considers the bilateral wishes of users when

evaluating a link, which outperforms the traditional approaches

or an overall measurement.
To find the intrinsic characteristics that influence user social

activities, we borrow from psychology and social science the

idea of using latent factors to represent these information.

Two social matrixes are then created against user content and

interaction, and the latent factors are extracted by means of

matrix decomposition. With respect to the network structure,

we adopt some popular quantitative metrics for link inference,

namely the common neighbor metric and the path metric.
To integrate those related metrics, we introduce two com-

bination strategies: independent fusion and interdependent

fusion. The former considers each metric independently and

combines them by assigning different weights. Those weights

are calculated by means of information entropy. The latter

integrates multiple metrics into the existing network structure

based models. Based on this principle, we propose some com-

binatorial metrics to calculate user closeness for link inference,

which we discuss in details in the following sections.

IV. USER PREFERENCE ON FRIEND ATTIBUTES

In real life, the concept of social value is often used to

measure the effect of a person being a friend to another.

Obviously, different attributes will result in different social

values being attributed to an individual. For example, some

users would like to choose colleagues as friends while others

may prefer as friends people with the same interest. So, we

need to quantify the social value of attributes for different

users so as to understand their preferences.

A. User Preference on Friend Attributes
A user’s preferences with respect to friend attributes

can be learned from the user’s current links. Obvious-

ly, a larger population of friends indicates a higher so-

cial value for an attribute value. We thus introduce the

Population Based Attribute Importance metric. For user u
and attribute value a, the importance of a for u can be

quantified as the proportion of u’s friends holding a against

the proportion holding a in the whole network. This reflects

how much this attribute is important to u so that it can be used

to infer a new link. For example, suppose that 50% of Tom’s

friends are from New York and that the population from New

York in the entire network is only 5%. Then with respect to

the geographic location attribute, a new user from New York

holds higher probability of being Tom’s friend than people

from other areas. Formally, the attribute importance metric is

given in equation 1, where Γ(u) is the set of u’s friends and

Iau is the importance of attribute a.

Iau =
|{x ∈ Γ(u)|Ax.a = a}|/|Γ(u)|
|{y ∈ V |Ay.a = a}|/|V | (1)

The metric provides a direct quantification of the impor-

tance of an attribute value. However, it can not measure the

comparative importance. For example, if the proportion of u′s
friends holding a is larger than that of the whole network, but

these friends are only a small part of u friends, then a is still

not a distinct indicator in judging a link. So, it is necessary

to further evaluate the information contained in each attribute

value.

The Entropy Based Quantification Importance is then

introduced to measure the comparative importance of each

attribute value. In information theory, entropy is a measure

of the uncertainty in a random variable [6]. In this context,

the term refers to the confidence of choosing a user with the

attribute value a as a friend for u. We compare two cases: the

general probability of a person being a friend to u and the

probability of a person with attribute value a being a friend

of the same user. The more the uncertainty is reduced, the

more information we obtain from this attribute for inferring

u′s friends. Let pfu represent the probability of a user being

a friend of u in the social network G. When we have no

knowledge about user attributes, pfu is the ratio of u′s friends

number against the user number in G, say pfu = |Γ(u)|/|V |.
The probability of a user not being a friend of u is denoted

by pf̄u = 1− pfu . So, the uncertainty E(V ) about whether a

user being u′s friend or not is calculated by the information

entropy. Formally, E(V ) = −(pfu log2pfu + pf̄u log2pf̄u).
For attribute value a, the user set V can be partitioned into

two parts: the set of users holding a and its complementary

set, dented by V a and V ā, respectively. Based on this knowl-

edge on a, the uncertainty is then computed as equation 2.

The information gain Gain(a) is the variation of these two

information expectations as equation 3, which quantifies how

the attribute value a reduces the uncertainty in link inference.

So, it can be used as the metric for evaluating the importance

of a for u.

Ea(V ) =
|V a|
|V | E(V

a) +
|V ā|
|V | E(V

ā) (2)

Iau = Gain(a) = E(V )− Ea(V ) (3)

Based on the attribute importance, u′s preference on attributes

is represented as a vector Lw
u = (I1u, · · · , Inu ), where n is the

size of attribute value set, Iiu, i ∈ [1..n] is the importance of

the corresponding attribute value for u.

B. Attribute Preference Based Link Metric

For a new user v ∈ V , an attribute vector Lv = (l1v, · · · , lnv )
is created, where liv ∈ {0, 1}, i ∈ [1..n], liv = 1 indicates that

v has attribute value i, otherwise, liv = 0. The probability of

v being a friend to u is calculated as the similarity between

u’s preference and v′s qualification vectors. There are quite

a few metrics to measure the similarity of two vectors. An

example choice is the cosine measurement, which is sensitive

to numerical values. Formally,

�(u→ v) =
Lw
u · Lv

|Lw
u ||Lv| (4)

Note that in the above equation, Lw
u reflects u′s preference

on a friend attribute, while Lv evaluates whether v′s attribute
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is qualified for u′s preference. Considering that the creation of

a link relies on bilateral wishes, we take into account mutual

preferences of two users when evaluating a link. That is to

say, not only u’s preference on v is considered, but also the

willingness of v is considered. So, the link metric between u
and v is formalized as Θa(u, v):

Θa(u, v) = �(u→ v) +�(v → u) (5)

V. LATENT FACTORS IN SOCIAL BEHAVIOR

According to psychology and social science, people often

prefer to make friends among people with similar interests.

Such observation has also been taken into account in previous

approaches, such as approaches that use interest groups to

predicate a link [11]. Unlike these approaches, we aim at

finding latent factors that influence people social activities. The

more similar the social motivations of two users are, the higher

the probability that they will connect in the social network.

This knowledge can be learned from user social activities.

In this section, we analyze the two kinds of social activities:

social contents and interaction.

A. Social Content Based Link Metric

Social contents refer to text, photo, post, comment, link to

a blog, and web pages. We employ the information extraction

method for social contents to create a user vector. For example,

concerning text information, the Bag-of-Words model is used

to extract a collection of words contained in text and the

appearance of each word is independently counted. In the

case of images, visual words are extracted by means of the

Scale Invariant Feature Transform algorithm [19]. So for all

social contents in a graph G, a dictionary is constructed, where

each word is associated with a unique index. For each user,

a vector is created according to one’s social contents against

the dictionary. For all users in G, we thus obtain a behavior

matrix Bn×m
c (Bc for short hereafterwards), where n = |V |

and m is the number of words in the dictionary.

Overall, the behavior matrix is very sparse and it is thus

difficult to analyze user correlations. To better understand

these social activities, we introduce the latent factors to capture

user social motivations by applying a matrix decomposition

method on Bc [24], namely Bc = N×MT , where N ∈ Rn×k,

M ∈ Rm×k and k in the number of latent factors. N is the

latent factor matrix associating each user with some latent

factors. M is the behavior latent factor matrix representing the

effect of latent factors on each behavior word. Our goal is to

obtain an appropriate decomposition from which to determine

a user potential social motivation. Let Bij denote the cell with

row i and column j of Bc. Let Ni and Mj denote the ith row

of matrix N and jth row of matrix M , respectively. We define

the conditional probability distribution over user behaviors as:

P (Bc|N,M, σ2) =
n∏

i=1

m∏

j=1

[D(Bij |NiM
T
j , σ2)]Iij (6)

where D(x|μ, σ2) is the probability density function of the

Gaussian distribution with mean μ and variance σ2, and Iij is

the indicator function that is equal to 1 if user i has the specific

behavior word j and 0 otherwise. Zero-mean Gaussian priors

are set for behavior feature vectors:

P (N |σ2N ) =
n∏

i=1

D(Ni|0, σ2NI),

P (M |σ2M ) =

m∏

j=1

D(Mj |0, σ2MI)

(7)

Through the Bayesian inference, the log of the posterior

distribution over user behavior is given by equation 8.

lnP (N,M |B, σ2
B , σ2

N , σ2
M ) ∝ P (B|N,M, σ2

B)p(N |σ2
N )p(M |σ2

M )

=ln

n∏

i=1

m∏

j=1

P (B|N,M, σ2)×
n∏

i=1

P (N |σ2
N )×

m∏

j=1

P (M |σ2
M )

=− 1

2σ2

n∑

i=1

m∑

j=1

Iij(Bij −NiM
T
j )2 − 1

2σ2
N

n∑

i=1

||Ni||2

− 1

2σ2
M

m∑

j=1

||Mj ||2 + C

(8)

where N and M can be learned purely based on the user-

behavior matrix using the gradient descent technique. Based

on the idea that people prefer to make friends with other people

similar to themselves, the content based link metric for users

u and v can be calculated by equation 9, where Nu and Nv

are the rows of user latent factor matric N .

Θb(u, v) =
Nu ·Nv

|Nu||Nv| (9)

B. Interaction Behavior Based Link Metric
A user interaction activity targets a specific user, such as

visit, support, comment, and retweet. For different users,

the same interaction activity may contain different intimacy

information. For example, for an active user with many social

activities, a single visit to another user does not indicate a high

intimacy. Comparatively, for an inactive user with only few

social activities, this visit probably indicates a high intimacy.

So interaction behaviors should be assigned biased weights for

different users.
Let k denote the number of interaction behavior types. For

user u, we create his/her interaction matrix as Bl(u) ∈ Rn×k,

where n is the number of users in the network. Let Bv denote

the vth row of Bl(u) which shows u′s interaction behaviors

towards user v. Each element Bvi refers to the number of

interaction i towards v. To compute the importance of behavior

type i of user u, we adopt methods similar to the ones for at-

tributes. Let E(V ) denote the information entropy when we do

not have any information about behavior i and Ei(V ) denote

the information entropy when we know such information of

i. So the social behavior weight Iiu for user u with respect to

behavior i is calculated by Iiu = Gain(i) = E(V ) − Ei(V ).
The effort of all interactions from u to v is defined by equation

10, which can be regarded as the evaluation on how the amount

of influence from u to v in a connecting path.

I(u→v) =

k∑

i=1

Bvi × Iiu (10)
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Consider the bidirectional influence, the behavior matrix Bl(v)
for user v is created and I(v→u) is calculated. So the closeness

of u and v on interaction behaviors can be calculated as follow:

Θl(u, v) = I(u→v) + I(v→u) (11)

VI. LINK METRIC FUSION

In the above sections, we have introduced several link

metrics based on different knowledge on user attributes, social

activities, and topologies. Since any single element may not

be completely reliable, we integrate them for link inference.

In this section, we introduce two combination strategies:

independent fusion and interdependent fusion. The former

considers each metric independently and then combines their

results. The latter integrates multiple elements with network

structure based models, such as Common Friends or Random

Walk.

A. Independent Fusion

In the independent fusion, the considered metrics are com-

bined together by assigned weights. For users u and v, let

Θa(u, v), Θb(u, v) and Θl(u, v) denote the user attribute

metric, social content metric, and interaction behavior metric

for link inference, respectively. We also take into account the

network structure based measurement, denoted by Θg(u, v).
So, a fusion link metric can be expressed as equation 12, where

wi, i ∈ [1..4] represents the weight of each factor.

ΘIF (u, v) = w1 ·Θg(u, v) + w2 ·Θa(u, v)

+ w3 ·Θb(u, v) + w4 ·Θl(u, v)
(12)

To assign a reasonable weight to each metric, we need to

further understand the relative differences among these metrics

by quantifying how much they reveal about a user preference

with respect to choosing friends. The basic idea is to analyze

the information that each metric contains. Since entropy is the

quantification of the uncertainty in a probability distribution

over several elements, it is a natural choice for representing

this information. Considering that the value domain of a metric

is the set of real numbers, we discretize the domain into

several intervals Ti, i ∈ [1, t], t ∈ N+, and counting the

occurrences Θx(u, v) ∈ Ti as f(Ti), where Θx represents an

alternative metric. The probability over Ti is then computed

as pi = f(Ti)/Σ
t
k=1f(Tk). So the entropy of metric Θx

is EΘx
= −∑t

i=1 pilog(pi). A larger entropy means more

uncertainty and thus we can obtain less information from the

corresponding link metric. So, we adopt the inverse of entropy

wi =
1

EΘx
as the weight in equation 12.

An obvious advantage of the independent fusion is that it is

easy to combine several influential elements. However, some-

times, some intrinsic correlations may exist in these metrics,

which are ignored in the independent fusion. To address this

consideration, we propose the interdependent fusion mode in

the following subsection.

TABLE I
INTERDEPENDENT FUSION OF DIFFERENT METRICS

Attribute Social content Interaction
Common friend A-CF B-CF L-CF
Random walk A-RW B-RW L-RW

Paths A-P B-P L-P

B. Interdependent Fusion

The interdependent fusion mode tightly couples multiple

metrics together by integrating the influential factors with

the network structure based models, such as the Common

Friends and Random Walk models. Some possible combina-

tion methods are given in table I. For example, the Attribute

and Common Neighbors based Metric (A − CF for short)

integrates the attribute metric with the common neighbor based

measurement. We now discuss some representative combina-

tion metrics; other combinations can be obtained by using

the same approach. In the following discussion, θx denotes

a link metric, such as Θa(u, v), Θb(u, v) and Θl(u, v), or the

combination of several metrics.

a) Common Friend Based Combination Metric: Let Γ(u)
denote the set of neighbors of user u in the social network G.

The network structure based link inference shows that having

a large number of common friends is an indication of the

existence of a link. A direct implementation of this idea is

to define the closeness of two users u and v as the num-

ber of their common neighbors, Θg(u, v) = |Γ(u)⋂Γ(u)|,
or to use the normalized Jaccard Coefficient, Θg(u, v) =
(Γ(u)

⋂
Γ(v))/(Γ(u)

⋃
Γ(v)). Obviously, the actual method

does not take into account the different influences of friends.

As we know from real life, one friend may have a higher

influence than other friends in creating a new link. Such

difference can be measured by a user closeness metric, such

as Θa(u, v), Θb(u, v), or Θl(u, v). The take into account the

weights of friends, we introduce the tight combination with

common friends metric. For users u and v, let Z represent

their common friend set, say Z = Γ(u)
⋂
Γ(v). For each user

z ∈ Z, we separately calculate his closeness with u and v.

The harmonic average of their closenesses can be used as the

diffusion effectiveness from z to u and v. So, the link metric

between u and v is calculated as follow:

ΘDF (u, v) =
∑

z∈Z

2 ∗Θx(z, u) ∗Θx(z, v)

Θx(z, u) + Θx(z, v)
(13)

b) Path Based Combination Metric: The common friend

method only considers one-step connections between users

without considering multi-distance connections, which how-

ever have been shown to affect link prediction [10], [21]. The

more paths exist and the shorter each path, the higher the

probability of a link. For example, the Katz’ path measurement

directly sums over this collection of paths [10], exponentially

suppressed by path length so as to count short paths more

heavily. Let Katzβ(u, v) = Σ∞� β� · |paths〈�〉u,v|, where β is a

constant used to limit the impact of long paths, paths
〈�〉
u,v =

{paths of length � from u to v}, and � >= 2. Two variants of
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this measure are defined: (1) unweighted paths
〈�〉
u,v; it is equal

to 1 if and only if there is a path between u and v with size l

and 0 otherwise; and (2) weighted paths
〈�〉
u,v; it is equal to the

number of paths of length � between u and v.

In this metric, each link is considered the same, which

therefore does not account for knowledge about the different

influence of links on paths. For example, user closeness can

be regarded as a link influence. Concerning user preferences,

the proposed link metric θx(u, v) should be tightly combined

with the weighted Katzβ method. Formally,

ΘDF (u, v) = Σ∞� β� ∗ (
�−1∑

i=1

|Θx(ui, ui+1)|) (14)

c) Random Walk based Combination Metric: Random

walk is a network structure based model widely used in link

prediction. It randomizes user relationships in a social network

and the key parameter is this point-to-point access probability.

In order to predict the friends of user u, a random walk is

started from u and on each step we have a restart probability

α to decide whether continuing the walk in the whole network

or restarting from this new node. If the decision is to continue

the walk, we should calculate the probability of a random walk

to next node.

The traditional random walk algorithm is mostly used ac-

cording to the number of user neighbors. To take into account

the different influence of neighbors, we integrate the proposed

link metrics Θx into the random walk method by replacing

each link weight with user closeness. Then the probability

of a random walk is the standardization of the corresponding

weights. Suppose we are at node v, for each friend f ∈ Γ(v),
the probability pvf of a random walk from v to f is computed

as:

pvf =
Θx(v, f)∑

f∈Γ(v)Θx(v, f)
(15)

After a few iteration of the random walk, the access probability

of each user node will converge to a number, denoted by ΘDF ,

which can be used as the link metric.

VII. EXPERIMENTS AND RESULT ANALYSIS

A. Dataset and Evaluation Metrics

In our experiment, we use two real databases. One is the

most popular on-line social network in Slovakia, Pokec [26],

which has been available for more than 10 years. This social

network connects more than 1.6 million people. This dataset

contains anonymous user data of the whole network. Another

is Tencent Weibo 3, which has been added thousands of new

users each day to the existing billions of active users, since its

launch in April 2010. The dataset contains anonymous users

for some parts of the network, including the links between

users, user profile information which is anonymized into num-

bers, the user tweet and retweet data which is anonymized into

keywords, and parts of the user interaction data. The detailed

statistics are showed in Table II. The reason for choosing

3www.kddcup2012.org/c/kddcup2012-track1/data

TABLE II
DATA SETS

Dateset #Nodes #Edges Attributes Behaviors

Pokec 1632803 30622564 gender,age,hobby NULL
Tecent
Weibo

1379738 50655143
birth year,gender

tweets, tag-ID
tweet,retweet

comment

these datasets is that they contain more user information on

attributes and interaction behaviors, while other public datasets

only contain social network structures or some user attributes

without user behaviors.

In both datasets the considered attributes include numeric

attributes, like age, and categorical attributes, like gender. We

preprocessed on the attributes. For numerical data, we dis-

cretize them into several intervals and each interval is treated

as an attribute value. For enumerable data, each constant is

treated as an attribute value. Then for each user, an attribute

vector is created against his/her values. In Tencent Weibo,

the behaviors are anonymous keywords which are extracted

from tweets, retweets, and comments. Since the number of

keywords is very large, we selected the most commonly used

keywords. Considering that some users are without common

friends or attributes and thus are not appropriate for the

comparing our approach with other approaches, they were

removed from the datasets. The training data is chosen as 80%

of the entire dataset.

We adopt some commonly used evaluation metrics. For a

predefined threshold, the results of link inference are labeled

as either positive (P ) or negative (N). The true positive (TP )
case occurs when both the prediction outcome and the actual

value are P . If the outcome is P and the actual value is N , this

is a false positive (FP ) case. Similarly, we have true negative

(TN) and false negative (FN). Then the precision is Pr =
TP/(TP +FP ) and the recall rate is Rr = TP/(TP +FN).
The metric F-measure is the harmonic average of Pr and Rr,

F = (2 ∗ Pr ∗ Rr)/(Pr + Rr). The ROC is a curve whose

x-axis is FPR = FP/(FP + TN) and y-axis is TPR =
TP/(TP + FN). The surface area under the curve is the

accuracy of link reference.

B. Experimental Results

We verify the proposed link metrics from several aspects.

First, we evaluate how the parameters and threshold affect

the results of link inference. Then we compare the proposed

different combination metrics with other methods.

We first compare the combined attribute and common friend

fusion method (A−CF ) against the network structure based

metric on two datasets. The results in Fig.1 (a)-(d) show the

F-measure for different threshold values ∂ for each user on

the x-axis, which is used to assess whether the inferred link

(u, v) exists based on Θ(u, v) > ∂. We can see that our

method has better performance for increasing values of ∂ and

reaches a stable value after ∂ = 1.3 on Pokec and ∂ = 1.1 on

Tencent Weibo, respectively. Comparatively, the performance

of the common friend method works well for decreasing values

of ∂ on Tencent Weibo, while it is almost not affected by
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(a) A− CF on Tencent Weibo
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(b) CF on Tencent Weibo
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(c) A− CF on Pokec
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(e) ROC on Tecent Weibo

�	
��

��
��

���
��

��
��

�

�������������������

���	��������������

 �!!�	�

� ��� ��� ��	 ���
�

���

���

���

���

���

��	

(f) ROC on Pokec

� �� �� �� �� �� 	� 
� �� �� ��
�

���	��������������

 �!!�	�

�

���

���

���

���

���

��	

��


���

���

���	�

��
�

��
��

	�

(g) F on Tecent Weibo

� �� �
 �� �� �� �� �
 �� �� �� ��

���	��������������

 �!!�	�

�
����
���
����
���
����
���
����
���
����
���

���	�

��
�

��
��

	�

��

(h) F on Pokec

Fig. 1. Comparison on Attribute Based Fusion Methods with Traditional Methods

∂ on Pokec. We also consider the ROC curve and show the

results in Fig.1 (e)-(f). Overall, our proposed metric is more

accurate in evaluating links than the previous methods and has

better performance than the previous methods. Since ROC
evaluates a method only at the average level for all users,

we also calculate the F-measure on each user. The results in

Fig.1 (g)-(h) show that our method is better than the previous

methods on most users.

Then we compare the attribute and random walk fusion

method (A − RW ) and show the results in Fig.2. Since the

random walk algorithm highly relies on the restart probability

α, we evaluate the accuracy on different α settings. The results

in Fig.2(a)-(d) show that both our method and the random

walk method have better performance for increasing values of

α on both datasets, and reach their best performance when

α = 0.8. The results on the experiments in Fig.2(e)-(h) show

that our method outperforms the previous methods on both

measurements, that is, F-measure and accuracy.

Finally, we evaluate the behavior and network structure

based fusion metrics (B−CF and B−RW ). In order to fairly

justify the behavior based method, we randomly select 100

users who are associated with friends and behavior information

in Tencent Weibo. We first compare the B−CF metric with

the common friend method. The results, reported in Fig.3(a),

show that our method, represented by the red curve, has higher

values of the F-measure in most cases than the common friend

method, represented by the green dashed curve. Then we

compare the fusion metric (B − RW ) with the traditional

random walk method. The results, reported in Fig.3(b), show

that our method is better than the random walk method in most

cases. Besides, the performances of both methods grow with

the increase of restart times and reach a stable value after it

is 14000. To be mentioned here, although our improvement

seems not distinctly large with respect to accuracy, when

taking into account the size of link set in predication, the

number of inferred links highly outperforms other methods.

VIII. CONCLUSIONS

In this paper, we investigate the link inference problem

in social services, which has significance in economy, social

security and other areas. To gain a deeper understanding of

user behavior, we introduce the concept of latent factor to

capture the intrinsic correlations between social purpose and

behavior. User preferences are considered in link inference

beyond the traditional methods or overall measurements. To

semantically combine these measurements together for link in-

ference, we propose the independent fusion and interdependent

fusion methods. Experimental results on real datasets show

that our approach outperforms previous approaches.

Link inference is actually a kind of recommendation. Our

methods can be also applied to the selection of web services

or service recommendation. As part of future work, we will

consider the evolution of user social preference. In practice,

user preferences may change according to one life stages,

which should be taken into account for link inference.
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