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Abstract. Named entity recognition (NER) for specialty domain is a
challenging task since the labels are specific and there are not sufficient
labelled data for training. In this paper, we propose a simple but effective
method, named Light Transfer NER model (LTN), to tackle this prob-
lem. Different with most traditional methods that fine tune the network
or reconstruct its probing layer, we design an additional part over a gen-
eral NER network for new labels in the specific task. By this way, on the
one hand, we can reuse the knowledge learned in the general NER task
as much as possible, from the granular elements for combining inputs, to
higher level embedding of outputs. On the other hand, the model can be
easily adapted to the domain specific NER task without reconstruction.
We also adopt the linear combination on each dimension of input feature
vectors instead of using vector concatenation, which reduces about half
parameters in the forward levels of network and makes the transfer light.
We compare our model with other state-of-the-art NER models on real
datasets against different quantity of labelled data. The experimental
results show that our model is consistently superior than baseline meth-
ods on both effectiveness and efficiency, especially in case of low-resource
data for specialty domain.

Keywords: Named entity recognition · Light transfer model ·
Specialty domain

1 Introduction

Name entity recognition (NER) refers to the recognition of entities with specific
meanings in the text, such as person, location, organization etc. It is a funda-
mental task in natural language processing that provides useful information on
constructing knowledge graph, syntactic parsing or information retrieval.

There are lots of research works on the general NER task, One of the rep-
resentative kind of methods focus on handcrafted rules, which need a lot of
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linguistic knowledge, and the rules of different languages or domains are not the
same. Kim [10] proposed to use Brill rule and Hanisch et al. [5] proposed a sys-
tem named ProMiner to recognize entities in biomedical text. Build handcrafted
rules is laborious, and not portable. Traditional machine learning models like
maximum entropy Markov models (MEMMs) [16] and conditional random fields
(CRF) [11] have a good performance in NER task. But these methods often
require feature engineering, which is troublesome. Compared to these models,
the neural models handle the NER task more effectively in an end-to-end mode.
The use of neural network structure to solve the problem of NER can be traced
back to 2003, when Hammerton [4] first proposed a NER model based on LSTM.
In 2011, Collobert et al. [2] proposed a multilayer neural network to tackle the
NER task, where they use the language model to compute word embeddings
and apply multiple tasks to train the model. Then, Huang et al. [7] proposed the
neural architecture BiLSTM-CRF for NER, where BiLSTM is used to extract
sequence representations and CRF is for decoding tags. Similarly, Ma and Hovy
[15] adopt both word level and character level features to feed the proposed
LSTM-CNN-CRF model. In recent years, language model pretraining methods
such as BERT [3] and ELMO [18] achieved state-of-the-art performance in many
NLP tasks including NER. Li et al. [12] proposed a BERT-MRC architecture for
NER which recognitions entities through machine reading comprehension task
and then Li et al. [13] introduce dice loss to improve the performance of BERT-
MRC.

Although most of these methods achieve good performances, they usually
require a lot of labelled data for training the neural network. Considering the
general NER task in their works, i.e. the entities are recognized by common
sense, the data can be shared across different methods.

There is an increasing need to recognize specific entities in specialty domain.
For example, in the field of Biology, the entities that are considered for amino
acids, such as Glycine, Glutamic acid, Lysine, rather than person names as the
general NER task. In another specialty example of procuratorate, the extracted
elements are domain specific. The considered entities are the crime suspect,
procurator, court, and etc. Although the purpose of NER task for specialty
domain is similar with the general NER task, the label set are completely dif-
ferent. Thus the pretrained neural network for the general NER task can not be
directly applied to this specific task. Furthermore, there are usually not sufficient
labelled data in specialty domain to train a specific neural network.

To address this challenging problem for low-resource NER in specialty
domain, some works adopt the transfer learning. Wang et al. [19] propose a
label-aware double transfer learning framework, where both the Bi-LSTM fea-
ture representations and the CRF parameters are transferred to the specific NER
task. Lin and Lu [14] adapt the top layers of existing NER neural architecture
to solve the specific task. Recently, Jia et al. [8] consider the language model as
the companied task with NER model and adopt multi-task learning to tackle the
NER task for a new specialty domain. As expected, these methods benefit a lot
from the general NER task by transfer learning. But they are not appropriate
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for the Chinese NER task since they do not take advantage of the characteristics
of Chinese components. The most related work is the lattice-structured LSTM
model for Chinese NER, proposed by Zhang et al. [20]. It encodes a sequence of
input characters as well as all potential words that match a lexicon and achieves
the best results on their provided specialty domain datasets. However, in order
to encode lexicon effectively, the lattice-structured LSTM model is designed with
a very complex cell structure. Motivated by this work, we explore the effective
use of character level and word level information of Chinese. But different with
their method, we design the linear combination on each dimension of input fea-
ture vectors rather than the concatenation operation, which reduces about half
parameters in the forward levels of network and makes the transfer light. Besides,
our transfer part is delicately constructed. Our contribution are summarized as
follows.

Firstly, to tackle the problem of NER in specialty domain, we propose a
simple but effective Light Transfer NER model (LTN) that consists of the general
part (LTN-G) and transfer part (LTN-T), as illustrated in Fig. 1. LTN-G is based
on the combination of BiLSTM and CRF networks, which is pre-trained by a
general NER dataset. For each token of the input sequence, we make full use
of Chinese characteristics, including the pretrained embeddings of characters
and words, as well as the information on part of speech (POS) tags. The POS
embeddings are randomly initialized and updated with the network. For the light
weight purpose, we combine the character and word embeddings in a linear way
on each dimension instead of the concatenation operation on the whole vector
as traditional methods, which can integrate the semantics and at the same time
reduce the number of parameters in the forward network.

Secondly, in the transfer part, we try to reuse the knowledge learned in the
general part as much as possible, from the granular elements for combining
inputs, to a higher level embeddings of sentence. Thus, we take into account the
hidden states of the final level of LTN-G as the inputs to the transfer part since
these high-level sequences contain rich semantics and latent syntax knowledge.
Similarly, the outputs of general tag sequence are embedded and are fed to the
transfer part also. For the light purpose, we adopt the gated recurrent unit
(GRU) in this part since it has fewer parameters compared to LSTM.

Finally, we perform experiments on real datasets and compare with other
state-of-the-art methods. The results on two Chinese specialty domain datasets
show that our model outperforms other baseline methods in the Chinese NER
task on both effectiveness and efficiency. Even with a small quantity of labelled
data, our model still has an acceptable result. Besides, it is worth mentioning
that there is no need to change either the data tags or the CRF layer of LTN-G
in the transfer process.
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2 The Light Transfer Model

2.1 General Part

As illustrated in Fig. 1, the general part of our model LTN is based on the
BiLSTM-CRF [6,7] structure where the BiLSTM encodes context information
better than LSTM and the CRF has proved to be effective in NER task. It is
pretrained on the general NER datasets and is fine-tuned for the specific NER
task.

Fig. 1. The light transfer NER model (LTN)

Let x = c1, ..., cn be a Chinese character sequence of input sentence, and
y = y1, ..., yn be the ground truth NER tag sequence for x. Each character ci is
mapped to vector xc

i using a pretrained character embedding lookup table:

xc
i = ec(ci). (1)

After word segmentation, the input sentence can be seen as a word sequence
x′ = w1, ..., wm. Each word wj is mapped to vector xw

j with pretrained word
embeddings:
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xw
j = ew(wj). (2)

If a word consists of only a single character after word segmentation, it is also
regarded as a word that is pretrained with other words, denoted by xw

i = ew(ci).
Each word embedding has the same dimensions with a character embedding. For
clarity, we adopt ew to represent the pretrained word embedding lookup table
and ec to represent the one for characters. The footmark i represents the ith

character in x and j represents the jth word in x′.
Different from other character and word based NER models, we use linear

combination on each dimension of their embeddings which reduce the number of
parameters in the forward network. In Chinese NER task, the input sequences
usually involves gold word segmentation. Hence, the error brought by word seg-
mentation will affect the network performance. To alleviate this problem, in our
model, each character belongs to a word in an input sequence has two different
representations after word segmentation. If a character ci is the end of a word
wj , we use the character embedding xc

i and the word embedding xw
j to represent

it. For the characters that are not in the end of wj , we represent the characters
with a single character word embedding xw

i instead of the word embedding xw
j .

Compared with the method that uses same word embedding for all characters in
a word, our method could better encode Chinese word information and improve
the performance of the NER model. Therefore, for each position ci, the combined
vector xl

i is computed by:

xl
i =

{
αxc

i + (1 − α)xw
i if ci is not the end of wj

αxc
i + (1 − α)xw

j if ci is the end of wj

(3)

where α is a parameter vector to balance the weights between character and
word.

Furthemore, we add POS information to the representation of each character.
We embed POS information with a shared POS embedding lookup table. Each
word wj has a unique POS tag pj belonging to it. Unlike word embedding, all
characters in a word have the same POS embedding. The POS embedding of
each word is represented by:

xp
j = ep(pj). (4)

Here, ep is the POS embedding lookup table which is randomly initialized at the
beginning of the training and updates during the training.

For the input sequence x = c1, ..., cn, the final input representation at cell i
is:

xi = xl
i ⊕ xp

i (5)

where ⊕ represents concatenation. We apply a standard bi-directional LSTM
for x to learn the context, where each cell accepts xi and computes it with the
previous hidden state for the current state hi:

−→
h i = LSTM(

−→
h i−1,xi) (6)
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←−
h i = LSTM(

←−
h i+1,xi) (7)

hi =
−→
h i ⊕ ←−

h i (8)

The standard CRF model is used as the output layer for LTN-G. The output
probability p(y|x) is computed over label sequence y = y1, ..., yn:

p(y|x) =
exp{∑

i(w
yi

CRFhi + b
(yi−1,yi)
CRF )}∑

y′ exp{∑
i(w

y′
i

CRFhi + b
(y′

i−1,y
′
i)

CRF )}
(9)

where y′ represents a possible label sequence, and wyi

CRF is a model parameter
specific to yi, and b

(yi−1,yi)
CRF is a bias specific to yi−1 and yi. We use the first-

order V iterbi algorithm to find the label sequence with a highest score. Given a
set of labelled training data G from general domain, the sentence-level negative
log-likelihood loss with L2 regularization is used to train the general part model:

Loss = −
∑

(x,y)∈G

log(p(y|x)) + λ‖Θ‖2 (10)

where λ is the L2 regularization parameter and Θ represents the parameter set.

2.2 Transfer Part

The transfer part LTN-T is based on BiGRU-CRF structure since GRU [1] has
fewer parameters and is more efficient than LSTM. We takes the output tag
sequence and hidden states of LTN-G as the inputs to the transfer part. For an
input sequence x = c1, ..., cn, let l = l1, ..., ln denote its output tag sequence of
by LTN-G. Each tag li is mapped to an embedding xt

i represented as:

xt
i = et(li). (11)

Here et represents a shared tag embedding lookup table. So the input sequence
t = t1, ..., tn of LTN-T is computed by:

ti = xi ⊕ xt
i ⊕ hi (12)

where hi represents output of general part BiLSTM at step i and xi is the input
representation from the general part. We apply a standard bi-directional GRU
layer for the input T , where the computation at each cell i is as follows.

−→
h i = GRU(

−→
h i−1, ti) (13)

←−
h i = GRU(

←−
h i+1, ti) (14)

hi =
−→
h i ⊕ ←−

h i (15)

Similar with the general part, we apply the standard CRF as the output of
transfer part and use the first-order V iterbi algorithm to compute the highest
scored label sequence. The loss function is the same with Eq. 10.
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2.3 Training Process

We first train the general part LTN-G with the labelled data for the general
NER task. After it performs well in the general task, it can be reused for NER
tasks in different domains. When we train the network for a specific NER task,
there is no need to change the tag set of the CRF layer in LTN-G. The new
labels for the specific task are only applied to the CRF layer of the transfer part.
The whole process is presented in Algorithm 1. When applying it to different
specialty domains, we can reuse the parameters of the general part, which makes
transfer model light.

Algorithm 1. Transfer learning
Require: General domain data G and tag set TG; Specialty domain data S and tag

set TS

Ensure: Transfered model for target domain
1: General part training:
2: while training steps not end do
3: split training data into minibatches Gm ⊂ G:
4: ΔhLSTM , ΔwCRF , Δα... ← train(Gm)
5: update general part parameters Θ
6: end while
7: load the parameters Θ of LTN-G
8: Whole model training:
9: while training steps not end do

10: split training data into minibatches Sm ⊂ S:
11: ΔhGRU , ΔhLSTM , ΔwCRF , Δα... ← train(Sm)
12: update LTN parameters
13: end while

3 Experiments

3.1 Datasets and Experiment Settings

We adopt three chinese datasets in different domains, MSRA NER [9], Weibo
NER [17] and Resume NER [20], the statistics of which are shown in Table 1.

MSRA [9]: It is a news domain dataset which contains three types of entities:
PER (person), LOC (location), and ORG (organization). MSRA is used as
shared task on SIGNAN backoff 2006. Since this dataset contains sufficient data
and is widely adopted in the Chinese NER research works, we select it to pretrain
LTN and other comparison models for the general NER task.

Weibo [17]: It is a low-source social media domain dataset from Sina Weibo
which contains four named entities: PER.NAM (person), LOC.NAM (location),
ORG.NAM (organization) and GPE.NAM(geo-political). It also contains four
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nominal entities:PER.N0M (person), LOC.N0M (location), ORG.N0M (organi-
zation) and GPE.N0M(geo-political). There are five types of entities different
from MSRA.

Resume [20]: It is a resume domain dataset annotated by Zhang et al. [20].
It contains eight types of entities: NAME (name), LOC (location), ORG (orga-
nization), CONT (Nationality), RACE (race), TITLE (title), EDU (education)
and PRO (profession). There are five types of entities different from MSRA.

Comparatively, both Weibo and Resume contain different entities. Thus,
they are used for the specific NER task. It is worth mentioning that the labelled
entities in Weibo are more sparse than Resume.

We implement the algorithm in Pytorch. The sizes of embeddings of charac-
ter, word and part-of-speech are set 50. Dropout rate is set 0.5. We use stochastic
gradient descent(SGD) for optimization and the learning rate is set to 0.01.To
ensure the fairness of the experiment, we use the same pre-trained embedding
to initialize the embedding layer of all models.

Table 1. Datasets statistics

Dataset Type Train Dev Test Entity/Sentence

MSRA Sentence 46.4k – 4.4k 1.58

Char 2169.9k – 172.6k

Entity 73.3k – 4.3k

Resume Sentence 3.8k 0.46k 0.48k 3.54

Char 124.1k 13.9k 15.1k

Entity 13.438k 1.63k 1.497k

Weibo Sentence 1.4k 0.27k 0.27k 1.35

Char 73.8k 14.5k 14.8k

Entity 1.885k 0.414k 0.389k

3.2 Comparison Methods and Metrics

The comparison models in this paper are as follows, where the precision (P),
recall (R) and F1-score (F1) are adopted as the evaluation metrics. CharLSTM
was selected as the baseline model to test the improvement brought by semantic
information embedding, such as POS and word embedding.

1. CharLSTM: the BiLSTM-CRF structure network with the character
embeddings as input. To compare the effects of transfer learning, we intro-
duce a variant CharLSTM-T that is pretrained for the general NER and
transferred for the specific NER by replacing the CRF layer of CharLSTM.
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Table 2. Comparison results on Weibo

Models Precision Recall F1

CharLSTM 58.77 48.55 53.17

Lattice 67.61 51.93 58.74

LTN-GC 69.16 51.45 59.00

LTN-G 68.47 51.93 59.07

La-DTL* – – 57.74

CharLSTM-T 62.35 48.79 54.74

Lattice-T 67.69 53.14 59.54

LTN 69.45 58.21 63.34

*indicates the result reported in the cor-
responding reference.

Table 3. Comparison results on Resume

Models Precision Recall F1

CharLSTM 92.69 92.64 92.67

Lattice 94.81 94.11 94.46

LTN-GC 94.45 94.05 94.25

LTN-G 94.37 94.60 94.49

CharLSTM-T 93.89 94.36 94.12

Lattice-T 94.67 94.85 94.76

LTN 94.87 95.40 95.14

2. Lattice [20]: the state-of-the-art Chinese NER model that achieves the
best results on Weibo and Resume. To compare the effects of transfer learn-
ing, we also introduce a variant Lattice-T that is transferred for the specific
NER on its CRF layer.
3. La-DTL [19]: a transfer learning model for cross-specialty NER which
conducts both feature representation transfer and parameter transfer with
label-aware constraints.
4. LTN and Variants: LTN is our transfer model. The general part of LTN
named LTN-G and the transfer part of LTN named LTN-T. In addition, to
verify the effect of linear combination between character embedding and word
embedding in the general part, we design the model LTN-GC to replace the
linear combination with concatenation operation.

3.3 Experiment Results

Effectiveness. We first verify the performance of our model comparing with
other models and present the results in Table 2 and 3, respectively. The models
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in the upper part of each table are trained directly on the dataset for specialty
domain without any transfer learning, while the lower part contains the mod-
els with transfer learning. The models in the lower part of each table are first
pretrained on MSRA, and then transfered to Weibo and Resume.

On both datasets, our model LTN achieves the best results on F1-score.
It is worth mentioning that the result of our model general part (LTN-G) on
two datasets is similar with Lattice without transfer learning. Comparing the
variants of our model, LTN-G and LTN-GC achieve similar results on both two
datasets. This illustrates that the linear combination of the input vectors in
LTN-G reduces the parameters of network without loss of accuracy.

The results in the lower part of Table 2 and 3 show that our transfer model
outperforms other methods. This illustrates that the adoption of contextual
information learned in the general domain benefits the transfer process, which
is better than simply adapting pre-training weights to a specialty domain. On
Weibo, our model LTN also performs better than La-DTL. Although La-DTL
uses more sophisticated techniques for the transfer learning approach, it does
not leverage the semantic information of the general domain more effectively
than LTN.

Comparing the results on two datasets, we can see that the performance on
Resume is much better that Weibo. This is because Resume contain more
labelled data than Weibo such that models can be trained well without trans-
fer learning. Our model LTN improves a lot comparing with baseline methods,
which convinces the performance of transfer learning and illustrates the effec-
tiveness of reusing knowledge from the general task.

Table 4. F1-score against different data size on Weibo

Model 10% data 25% data 50% data 100% data

LTN 45.02 51.41 62.57 63.34

Lattice 28.39 39.45 53.96 58.74

CharLSTM 22.71 32.48 48.16 53.17

Table 5. Model processing speed on Weibo

Model Train (sent/sec) Test (sent/sec)

LTN 19.37 67.87

Lattice 8.10 24.32

CharLSTM 23.98 135.45
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Robustness. Then we quantify the robustness of models under insufficient data,
we conducted the experiments against different proportion of data on Weibo.
Lattice and CharLSTM are trained directly on Weibo without transfer learn-
ing. Table 4 shows the F1-score of models trained with Weibo of different dataset
size, namely 10%, 25%, 50%, and 100%, respectively.

The results in Table 4 show our model performs much better than Lattice
and CharLSTM on all cases. Specially, even in the case of 10%, our model still
achieves an acceptable result. This convinces that the performance benefits from
transfer learning, while Lattice and CharLSTM model are affected much by
the dataset size. It is worth mentioning that our model needs only half of the
data to achieve the equivalent result of Lattice.

The results on the robustness of LTN illustrate that the proposed transfer
learning based method can be adapted to a new area without much labelled
data. This attributes to that the knowledge that are learned in the general NER
are reused in the domain specific NER task.

Efficiency. Since a light model should process data fast in either training or
testing, we compare the proposed model with others on this metric. Table 5 shows
the processing speed in terms of sentences per minute at the same environment.
The results on both training and test processes show that our model LTN is
much faster than Lattice. Lattice is designed in order to better use lexicon
information and the complicated network structure leads to the slow speed of
training and testing. Although the CharLSTM model with the simplest net-
work structure is faster than our model, together considering its performance,
our model is light and with the best performance.

4 Conclusion

We propose a light and effective transfer model for the NER task for specialty
domain. By designing an additional part over a general NER network, we reuse
the knowledge learned in the general NER task as much as possible, from the
granular elements for combining inputs, to a higher level embeddings of outputs.
At the same time the model can be easily adapted to the domain specific NER
task without reconstruction. We compare our model with related works on real
datasets. The experimental results show that our model is consistently superior
than baseline methods on both effectiveness and efficiency, especially in case of
low-resource data for specialty domain.
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