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ABSTRACT
In location based services, predicting users’ temporal-spatial be-

havior is critical for accurate recommendation. In this paper, we

adopt a joint embedding (JointE) model to learn the representations

of user, location, and users’ action in the same latent space. The

functionality of a location is the critical factor influencing different

elements of the behavior and is learned by an embedding vector en-

coding crowd behaviors. A user personalized preference is learned

from the user historical behaviors and has two features. One is

the combination of action and location, which is learned by max-

imizing the semantic consistency of the observed behaviors. The

other is the periodic preference. Inspired by the notion of periodical

temporal rules, we introduce the concept of temporal pattern to

describe how often users visit places so as to reduce the high tem-

poral variance of behaviors. A projection matrix is introduced to

combine the temporal patterns with location functionality. A user

behavior is predicted by the joint probability on behavior elements.

We conduct experiments against two representative datasets. The

results show that our approach outperforms other approaches.
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1 INTRODUCTION
Location based services (LBS) are today used in many different ap-

plication domains. LBS platforms provide users with opportunities

for sharing point-of-interests (POIs), products, and comments. They

greatly enhance user experience and help merchants to accurately

target advertisements and recommend products. Predicting user

temporal-spatial behavior is a fundamental task for accurate rec-

ommendations. According to the Revealed Preference Theory in

Economics
1
, a user behaviors reveal her inherent demands and the

disposable budget like income or time. A user preferences actually

are the combination on which places she likes to go, how often to

be there and what actions taken there, rather than a single element

of behavior. For an instance, two users both prefer western foods,

but they may choose different restaurants due to the consumption

level or go the same restaurant with different frequencies or with

different menu choices. So it is necessary to learn not only the ex-

pected location of the user, but also the times at which the user will

be at the location and the activities the user will do at the location at

a certain time. A recommender system with such capability would

be able to provide very accurate recommendation.

The works more closely related to this problem are the ap-

proaches for POIs recommendation on either a visit time or a loca-

tion [5, 6, 14, 24]. But such approaches do not predict other elements

of user behavior, such as the actions carried by the user, i.e. shop-

ping or social activities etc., and thus are unable to predict these

elements together. Other related works focus on user action predic-

tion [9, 21]. Such approaches take into account the user purchase

history as a user-item rating matrix and predict items that the user

would buy by using matrix factorization [10, 20]. However, these

methods are designed for online transactions and do not take the

spatial factors into account, thus they are unable to predict the

user temporal-spatial behavior. For example, in online to offline

(O2O) applications, the location of a shop is an important factor for

predicting whether the user would visit this shop.

In practice, however, it is much harder to jointly predict multiple

behavioral elements than to predict a single behavior element as

traditional recommendation methods do. The reason is that user

behavior representations adopted by existing approaches provide

very little semantics and thus it is difficult to correlate the various

elements of a behavior. Users’ action preferences also vary and are

temporal-spatially specific. For example, an individual may go to

a park once a week and go to her office every weekday, but only

1
https://en.wikipedia.org/wiki/Revealed_preference
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Figure 1: The Embedding Process on User Behavior Prefer-
ence.

once a month to a museum. Even for the same user there is a high

variance in his preference.

To address these challenges, we propose a joint embeddingmodel

to learn the correlated elements in user behaviors as latent vectors

in the same space. Inspired by the Consumer Demand Theory
2
, the

location functionalities are regarded as the driven factor and learned

by embedding vectors encoding crowd behaviors. Such vectors are

used to join other behavior elements together. A user personalized

preference is learned from the user historical behaviors encoded

by the embeddings, and includes two parts as shown in Figure 1,

where the left gives an example of Bob’s behavior sequence and the
right gives the model. The first part of model is the combination

of action and location, which is represented by the expectation of

action vectors at each location in the entity space and is learned

by maximizing the semantic consistency of the observed behaviors.

The second part is the periodic preference. Since user’s behaviors

have a high variance in time, it is hard to directlymodel the temporal

elements of the behaviors in the form of time intervals. Inspired

by the notion of temporal periodic rules, we introduce a novel

scheme, based on temporal patterns, to represent how often a user

visits a place. A projection matrix is introduced to combine the

temporal pattern with the location functionality. Such an approach

supports a unified representation of user preferences in the pattern-

specific space. We conduct experiments on two real-world datasets

to verify our proposed approach. The evaluation results show that

our approach outperforms related state-of-the-art methods. To the
best of our knowledge, our approach is the first able to predict user
behavior by combining multiple aspects together.

The rest of this paper is organized as follows. Section 2 discusses

related works. Section 3 and 4 introduce the notations and discusses

the proposedmodel. Section 5 and 6 analyze the datasets and present

the experimental results, respectively. Finally, we conclude this

work.

2 RELATEDWORKS
The work closely related to ours is the work on POI recommenda-

tions. Several approaches have been proposed to predict the location

an individual would visit by learning from visit histories of a similar

group of individuals. POI recommendation approaches are typically

based on the collaborative filtering techniques [22]. Zheng et al.

2
https://en.wikipedia.org/wiki/Microeconomics

apply a collective matrix factorization method to mine interesting

places and recommend them to the users [27, 28]. However, these

prediction models do not take into account temporal information

and thus are unable to accurately predict the time point of future

behaviors. Zhang et al. adopt Markov models for prediction by

regarding visit locations as states in a Markov chain, whereas the

transition probability is assumed to be the same for all users [2, 25].

In these models, different elements in a behavior are considered

independently, and thus the models are unable to capture contex-

tual information from the entire behavior sequence. Recently, the

word2vec framework has been proposed for POI recommendation

[18]. Inspired by the words’ contextual correlations in sentences,

Feng et al. construct a geographical binary tree to incorporate spa-

tial elements; the nearby POIs are assigned to nodes that are close

in the binary tree [4]. Other techniques for POI recommendation

incorporate geographical influence [11, 22] and temporal influence

[15, 26]. Unlike such approaches, we take into account concrete ac-

tion types, besides the traditional physical points, and incorporate

the temporal variance into the learning objective.

Recent approaches to event prediction are also related to our

work, such as approaches for predicting the type of a future event

based on the observed sequence of events [3, 13]. Recurrent Neural

Networks (RNN), assuming that the temporal dependencies change

monotonously in a sequence, have been successfully applied in

predicting sequential events. In the context of healthcare, Liu et
al. have designed a method to predict clinical events by using an

extension of LSTM[13]. Such approaches do not link spatial and

temporal elements together to predict future event. Differently, we

take into account these information such that our method can learn

the rich semantic embeddings of different behavior elements.

Approaches for item recommendation are also related to our

work, as our approach can be used for recommending an item as

user action in her next visit to some location. Rendle et al. propose
factorizing personalized Markov chains to model the transition

probability between item pairs; this model is popular and often cho-

sen as the baseline method [19]. With the growing popularity of lan-

guage models, embedding-based methods have been increasingly

used in item recommendation techniques. The recommendation

model by Wu et al. is based on an embedding of users and items in

a common latent space. The transition probability from one item

to another is related to the Euclidean distance of the two items in

the latent space [21]. A major limitation of such approaches is that

they do not predict temporal elements in user behaviors[19, 21].

Inspired by the Translational Invariance in Geometry, the trans-

lation based models project the entities and the relations in a knowl-

edge graph into a continuous latent space [1, 12]. A triple (h, r , t)
in a knowledge graph indicates the fact of the entities h and t being
associated with relationship r . Taking the triples (h, r , t) as inputs,
the embedding vectors h, r , t are learned by following the principle
h + r ≈ t since a relation vector r is regarded as a translation

operation in the space, and t is the nearest neighbor of h +r . These
works focus on the task of predicting the possibility of whether an

entity has a specific relation with another entity that is not given in

the knowledge graph. Although our embedding method is similar

on modeling the relationships between behavior elements, we solve

a different problem and integrate the sequential relations between
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behaviors such that we can learn the functional and geographi-

cal semantics from crowd behaviors. In the prediction period, our

model seems related to some generative models [8, 23] that provide

a probability distribution over all possible events. These methods

focus on mining the geographical specific semantics or patterns

from crowd behaviors. For example, Yin et al. investigate the latent
semantic regions in which the messages are posted with the same

topic preference[23]. But they do not consider a user’s preference

and do not take into account the temporal factor. Thus they are not

appropriate to predict a user behavior.

To summarize, we jointly predict user temporal-spatial behavior

by combining multiple aspects together. We consider both group

common behaviors and personalized preferences.

3 PROBLEM STATEMENT AND THE
PROPOSED MODEL

3.1 Notions
LetU and L denote the set of users and the set of locations, respec-

tively. LetA denote the set of user action types that are part of users’

behavior. For example, buying tickets at a cinema and watching

a movie are two action types. Let E denote the set of events. An

event e =< u, l,a, t > is an action executed by u ∈ U at l ∈ L at

time point t . For convenience, we denote element x of event e by
e(x). The behavior history of a user u is represented as a sequence

of temporal-spatial events Su = [e1, e2, ..., e |Su |], such that for any

i, j ∈ {1, 2, ..., |Su |}, i < j, ei (t) < ej (t) holds. If there are several
actions executed by a user on the same day at the same location,

we treat them as different events.

Definition 1. User Behavioral Prediction (UBP for short) Prob-
lem. Given a user set U , a location set L, an action set A, and users’
behavior histories set Ŝ = {Su |u ∈ U }, the User Behavioral Prediction
Problem aims to predict which location a user v will visit, v ∈ U , and
when, and what action the user would take there.

3.2 The Embedding Model
We propose a joint embedding (JointE) model to combine the cor-

related elements of a behavior to solve the UBP problem, where

the representations of user, location, and action are jointly learned

in the same continuous space, denoted by u, l,a ∈ Rd . Our ap-
proach is based on three considerations. 1) The functionality of a

place is the critical factor of a behavior, since when combined with

temporal patterns, it reveals people’ inherent requirements or the

intended purpose of the users. 2) Each user has her own behavior

specificities, such as action type, location, and temporal pattern.

The user specific behavior accurately reflects the location where

a user goes, with which frequency, and what the user does at the

location. 3) Groups of individuals often share similar patterns, that

can be learned from collected data about their behaviors. This is

often the basis of recommendation systems and reflects the proverb

Everyone thinks one of a kind, but in fact there are thousands of
similar people.

This process is implemented by the following three steps. The

first step is to compute the correlations between users, actions, and

locations. A user may perform different actions at the same location.

A user behavior specificities are learned from historical data and

modeled by the combination of action preferences and temporal

patterns at different locations. For example, at the same shopping

mall, a user may shop at a supermarket, go to a restaurant for lunch

or watch a movie at a cinema. A user action preference vector au
l

where l ∈ L is calculated as the expectation of action vectors, au
l
=∑ |A |

i=1w
u
l ,iai , where ai denotes the vector of action ai ∈ A andwu

l ,i
denotes theweight ofai . It is computed by the frequency of actionai

executed by u at l ,wu
l ,i =

| {e=(u ,l ,a,t ) |e ∈Su ,e(l )=l ,e(a)=ai } |
| {e=(u ,l ,a,t ) |e ∈Su ,e(l )=l } | . Given

a user u, the set of her ever visited locations is denoted by Lu ;
the correlations between users, actions, and locations are obtained

by the user’s action preference. The vectors of u and a should be

connected by the vector of l , namely u + au
l
= l . The loss function

is defined as follows:

ℓ1 =
∑
u ∈U

∑
l ∈Lu
| |u + au

l
− l | |2 (1)

The second step is to compute the temporal correlations of user

behavior elements. To model the high variance of time intervals

in behaviors, we use temporal patterns to describe how often a

user visits a location, which is defined as a set of discretized and

comparable scales,ℜt = {r1, r2, · · · , r |ℜt |
}. An intuitive example

of periodical patterns is {never , seldom, sometimes,o f ten,always},
which can be transformed into a set of certain time period according

to different temporal granularities, such as weeks or months. We

adopt a mapping function f (·) to transform a time interval into a

temporal pattern based on the periodical visits to a place. A projec-

tion matrix for each temporal pattern is introduced to combine it

with location functionality. A temporal pattern can be embedded

into either the same space Rd in which user, location, and action

are embedded, or into another space Rd
′

, where d ′ , d,d ′ ∈ N+.

Correspondingly,Mr ∈ Rd×d orMr ∈ Rd×d
′

. Our goal is to mini-

mize the distance between u, r and l in the pattern-specific space.

The loss function is:

ℓ2 =
∑

e=(u ,a,l ,r )∈E

| |u ·Mr + r − l ·Mr | |2 (2)

There are two advantages in using the pattern-specific projection

matrix rather than directly embedding the temporal pattern r in
the same continuous space. One is the capability of representing

flexible temporal patterns into the same semantic space with other

comparably stable user behaviors. In practice, a user preference

is reflected by the functionality of the location, which changes

less over time. However, the time points of behaviors are more

dynamic and stochastic, both with respect to different users and to

the same user over time. So the pattern-specific projection matrix

helps represent such variations in a uniform way. The other is the

capability of distinguishing the embeddings of users who have the

same temporal pattern at the same location but with different action

types. Their representations should be close in the temporal pattern

space but far in the entity space.

The third step is to compute the semantic correlations between

locations in user behavior sequences. We first define a context win-

dow with a size c ∈ N+ to represent the location correlations in

successive events. We use the notation li to denote the i-th location

in a user behavior history. Given a user behavior history Su and

the i-th event ei in S
u
, the set of locations in the context window of
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li is denoted by C(l) = {li−c , . . . , li−1, li+1, . . . , li+c }. Locations in
a sequence should be closer with respect to both the semantic and

geographical aspect than those not occurring in the sequence. The

context vector lc is represented by the expectation of location vec-

tors in the context window, namely lc =
1

2c (li−c + . . . + li+c ). The
goal is to maximize the context locations conditional occurrence

likelihood for all sequences. The probability p(l |C(l)) is defined by

the softmax function: p(l |C(l)) =
exp(l ·lc )∑

l ′∈L exp(l ′ ·lc )
. We adopt the log-

posterior probability as the loss function over observed locations:

ℓ3 = −
∑
u ∈U

∑
l ∈Lu

loд p(l |C(l)) (3)

Based on the previous formulations, we can define the objective

function for computing the semantic correlations of elements in

user behavior sequences. Let Θ = {U , L,A,ℜt } denote the param-

eters of the model, which are learned by the joint optimization

objective:

Θ∗ = argmin

e ∈E
{α · ℓ1 + β · ℓ2 + (1 − α − β) · ℓ3 + λ | |Θ| |

2

2
} (4)

where | |Θ| |2
2
is the regularization component, α, β and λ are super

adjustment parameters. The joint optimization process is presented

in the supplementary section 3.3.

3.3 The Joint Optimization
Wepresent the process for learning the parameters. The embeddings

are learned by jointly optimizing the objective function given by

Eq. 4. The objective ℓ1 aims to minimize the connecting error of

the locations that are visited. We tend to generate negative samples

by replacing the location rather than the user. In this way, the

chance of generating false negative samples can be reduced since

the average number of users visiting each location is much larger

than the average number of locations visited by each user. Given

a user u, the set of his/her ever visited locations is Lu . The set

of locations that u never visited, based on the historical records,

is denoted by Lun = L \ Lu . For each event (u, l,a, t), we draw k
negative location samples by random selection from Lun based on

the probability distribution of locations for the training set. Let

fa (u, l) = | |u + aul − l | |
2
denote the distance between u + au

l
and l .

ℓ1 is then re-written as:

ℓ1 =
∑

l ∈Lu ,l ′∈Lun

(fa (u, l) − fa (u, l
′)) (5)

We transform the function ℓ1 (Eq.5) into the form of hinge loss:

ℓ1 =
∑

l ∈Lu ,l ′∈Lun

max(0,γ + fa (u, l) − fa (u, l
′)) (6)

where γ is the margin parameter. Similarly, ℓ2 (Eq.2) is rewritten as

ℓ2 =
∑

l ∈Lu ,l ′∈Lun

max(0,γ + fr (u, l) − fr (u, l
′)) (7)

where fr (u, l) = | |u ·Mr+r−l ·Mr | |2 is the connecting error between

u, r and l in the pattern-specific space. The objective ℓ3 aims to

capture the sequential influence between locations. We adopt the

negative sampling technique to train the model efficiently[17].

ℓ3 = −
∑

l ∈Lu ,lc ∈C(l ),l ′∈Lun

(loдσ (l · lc ) + loдσ (−l · l
′)) (8)

We leverage the stochastic gradient descent (SGD) algorithm

to optimize the parameters. Each parameter is updated by Θi ←

Θi − η
∂ℓ
∂Θi

, where η is the learning step.

We take l , u, ai and r as examples to explain the gradient func-

tion for Θ in ℓ1, ℓ2.

∂ℓ1
∂ui
= 2(

|A |∑
k=1

wu
l ,kak ,i −

|A |∑
k=1

wu
l ′,kak ,i + l

′
i − li )

∂ℓ1
∂li
= −2(

|A |∑
k=1

wu
l ,kak ,i − li )

∂ℓ1
∂ai , j

= 2wu
l ,i (

|A |∑
k=1

wu
l ,kak ,i +uj − lj )

− 2wu
l ′,i (

|A |∑
k=1

wu
l ′,kak ,i +uj − l

′
j )

∂ℓ2
∂r j
= 2

d∑
i=1

l ′i ·M
r
i j − 2

d∑
i=1

li ·M
r
i j

(9)

Since ℓ3 involves only location embeddings and the other parts

involve multiple elements, we split the whole optimization process

into two sub-processes and iteratively execute them. The process

is balanced by a hyper parameter ρ ∈ (0, 1). In each iteration, we

select an optimization sub-process according to whether a random

variable x ∈ (0, 1) is smaller than ρ, then update the parameters

for the selected sub-process. Details are shown in Algorithm 1. The

convergence condition is satisfied when the loss decrease is within

a threshold.

The overall model complexity is O(d(|U | + |A| + |L|) + (d +
1)d ′ |ℜt |). Although the training process is time consuming, it is

performed only once. In practice, the common parameters can be

reused, such as U ,A, L,ℜt . For a new user who never appeared in

the model, the model complexity of learning the user vector isO(d),
which is very efficient.

4 USER BEHAVIOR PREDICTION
In this section, we introduce two prediction models based on the

embeddings of user behavior elements. Here, for the ease of calcu-

lation, we discretize continuous time t to temporal patterns. Our

problem can be formulated as: Our goal is to predict user u’s next
action at and next temporal pattern rt , given the next location lt
and the historical behavior sequence Su .

4.1 Probabilistic Inference Model
Our goal is to estimate the joint probability of the elements and

select the most likely behavior from the set of behavior candidates.

Let E denote the combination of all elements in behaviors. The prob-

ability distribution is modeled as the mixture of location preference

and each element-level preference at the location.

e∗u = argmax

e ∈E
p(e |Su ,Θ)

= arg max

e=(u ,l ,a,t )
p(l |Su ,Θ) · p(a |u, l,Θ) · p(t |u, l,Θ)

(10)

Each element is computed as follows.
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Algorithm 1 Model Training

Input: training set Ŝ = {Su |u ∈ U }, user set U , location set L,
action set A, pattern setℜt , embedding dimensions d , d ′, con-
text window size: c , negative sample size: k , learning step: η,
optimization part selection: ρ.

Output: all parameters in Θ.
1: /*initialization*/

2: for i ∈ U ∪ L ∪A do
3: i ← uni f orm(− 6√

d
, 6√

d
), i ← i

| |i | |

4: end for
5: for r ∈ ℜt do
6: r ← uni f orm(− 6√

d ′
, 6√

d ′
), r ← r

| |r | |

7: Mr ← Mr
i j = 1 i f i = j,otherwise 0

8: end for
9: /*optimization*/

10: repeat
11: Sample u ∈ U randomly

12: draw n locations and k ∗ n negative samples

13: x = random(0, 1)
14: if x < ρ then
15: update parameters in loss functions ℓ1, ℓ2
16: else
17: update parameters in loss function ℓ3
18: end ifℓ = α · ℓ1 + β · ℓ2 + (1 − α − β) · ℓ3 + λ | |Θ| |

2

2

19: until ℓ converges
20: return Θ

1) The probability distribution over locations in the next behavior

is calculated by

p(l |Su ,Θ) = p(li+1 |l
u
i ,Θ) =

exp(li+1 · l
u
i )∑

l ′∈L exp(l
′ · lui )

(11)

where i is the size of Su , li+1 is the latent vector of li+1, l
u
i is the

set of locations u recently visited, lui is the expectation of location

vectors in lui .
2) p(a |u, l,Θ) denotes the probability distribution of action type

at l in the next behavior. Formally,

p(a |u, l,Θ) =
exp[(u + a) · l]∑

a′∈A exp[(u + a′) · l]
(12)

3) p(r |u, l,Θ) denotes the probability distribution of temporal
pattern towards l of the next behavior. Formally,

p(r |u, l,Θ) =
exp[(u ·Mr + r ) · (l ·Mr )]∑

r ′∈ℜt
exp[(u ·Mr ′ + r ′) · (l ·Mr ′)]

(13)

4.2 Attention-Based Model
We also try the Attention Based Recurrent Neural Network Model

(ARNN) so as to capture the users’ dynamic preferences. This model

is based on the equations 10 and 11, and combine the predication

on action and pattern in equations 12 and 13. As presented in

Figure 2, there are three parts. First, based on the embeddings

learned by the JointE model, a user behavior event at step t is
modeled as the vector Xt by concatenating the embeddings of

behavior elements. The second part is a RNN network where a user

behavior sequence of Xt is fed into the network. The output of

Figure 2: Attention-Based Neural Network PredictionModel

Table 1: Statistics for the datasets used in the evaluation.

Dataset #records #users #locations #action

Koubei 579,993 19,977 1,104 11

Gas 581,367 35,418 693 8

hidden state in RNN is denoted by ht . The attention value on each

step is computed against the hidden state ht and the user vector

u, denote by vu ,t , which represents a user’s dynamic preference.

The third part takes the hidden state on step t and the attention on

several previous behaviors as input, and then predicates the next

behavior by so f tmax function on a dense net. Details are given

below.

Xt = concanate[l,a, r ]

ht+1 = tanh(Mhht +M
xXt + b

h )

vu ,t−k =
e(ht−kM

v+bv )u∑K
k=1 e

(ht−kMv+bv )u

Ct =

K∑
k=1

vt ,t−kht−k

(14)

where K denotes the size of time window,M and b represent the

weight matrices and bias vectors.

5 DATA DRIVEN MODEL SETTING
5.1 Datasets
We use two representative real datasets with both temporal and

spatial features for user behaviors. The first dataset, Koubei , is
collected from a popular O2O service platform from Jun. 2016 to

Oct. 2016. It contains 579,993 records involving 1,104 locations and

19,977 users’ payment data. We retain the users with more than

15 records. The information about merchants includes location

information and category information, such as barbecue, buffet,

hot pot and etc. The data set and source code of this paper can be

obtained from https://github.com/yghn14/JointE.

TheGas dataset records user transactions in gas station, includ-

ing car fuel filling and buying goods in the station store, which

were collected from a province branch of PetroChina from Jan. 2017
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(a) (b)

Figure 3: The statistics on user behaviors in the two datasets.
(a) The x-axis denotes the number of locations a user ever
visited, and the y-axis denotes the number of users. (b) The
x-axis denotes the number of action types in user historical
records and the y-axis denotes the number of users.

to Dec. 2017. It includes both online transactions and offline behav-

iors. Each record includes the details of each transaction, i.e., the

time, location (i.e., latitude and longitude), product category(i.e.,

fuel, car accessory and food ), and the amount. We filter the user

data based on the number of historical records per individual, and

retain those with more than 15 records. Totally, there are 581,367

records, involving 35,418 users and 693 places. The statistics about

the datasets are shown in Table1.

5.2 User Behavior Statistics for Model Adaption
We analyze the datasets to gather some basic statistics on the user

behaviors so as to understand their semantics. We first investi-

gate the spatial elements of user behaviors based on locations and

actions associated with each user in Figure 3. Although user prefer-

ences look stable with respect to locations and actions since each

preference is associated with only a few places and actions, these

correlations are actually uncertain.

For the temporal aspect, we quantify the user periodical patterns

on each location. We first randomly select two users from the Gas
dataset, denoted by u1 and u2, and count their periodical visits to

each location within a given period by c(e |l, δ ) = |{e ∈ Su |l ∈
Lu , e(δ ) = δ }|. The results in Figure 4(a)-4(b) show that even for the

same user, temporal patterns have high variance. To understand a

user’s overall behavior specificity, we compute the expectation µu

and variance σu on time intervals for u. The statistics on the Gas
dataset in Figure 4(c) show large differences between users, thus

showing that modeling temporal patterns is challenging.

For each user u, we obtain the location-specific temporal in-

tervals δ l in Su and the mean and standard deviation of this set,

denoted by µ,σ . Based on the notion of periodical rules, we ran-

domly chose a threshold (for example, 10) and classify users into

two groups by µ (for example, µ ≥ 10 and µ < 10). The statistics

for σ/µ are shown in Figure 4(d). We can see that the statistics for

these groups are approximated to the same probability distribution.

These results show that it is better to use temporal patterns instead

time intervals.

A user’s periodic patternswith respect to a location are computed

by amapping function f (δ li ) → r : ℜt . This encodingmethod helps

not only in modeling user temporal factors according to a unified

(a) c(e |l , δ ) for u1 (b) c(e |l , δ ) for u2

(c) statistics on µu ,σu (d) statistics on σ /µ

Figure 4: The correlations between elements of behaviors in
theGas dataset. (a)-(b) The x-axis denotes intervals and they-
axis denotes the frequency c(e |l, δ ). (c) The statistics of δ for
users. (d) The probability distributions of value σ/µ for: (1)
all the users; (2) users with µ < 10; and (3) users with µ >= 10.

statistical scheme, but also in taking into account user-specific

periodic preferences.

6 EXPERIMENTS
6.1 Baseline Models and Metrics
The algorithms are implemented in Python, and all experiments are

performed on a x64 machine with 2.5GHz intel Core i7 CPU and

16GB RAM. We report here results from the experiments on the

Gas and Koubei datasets. For each user, the behavior sequence is

partitioned into two parts, 80% for training and 20% for testing. To

verify the effectiveness of our model, we select several state-of-the-

art methods as comparison. The following models are compared in

our evaluations:

JointE. This is the proposed model described in previous sec-

tions, which learns the embeddings of behavior elements using a

joint-objective optimization. Temporal patterns are learned from

location-specific time intervals, the mapping function is f (δ li ) → r :

ℜt . For the super parameters, we tried several settings and choose

the best combination, which are c=1,k=2,d=d ′=20. We find that the

adjustment on the parameters α, β, λ has little influences on the

results. Thus we adopt α = β = λ = 0.25 to guarantee each part

has an equal importance in the optimization. Under these settings,

we learn the latent embeddings for users, locations, actions, and

temporal patterns.

JointE-n. This is a specific form of our proposed method, where

the temporal pattern is redefined while the remaining parts of the

model are identical to JointE. Temporal patterns are learned from

the normal time intervals, the mapping function is f (δi ) → r : ℜt .

The learning process and parameter settings are the same as JointE.
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Table 2: Comparison on the performance in solving UBP.

Dataset Method

Behavior Action Pattern Location

P@1 P@5 P@10 P@1 P@3 P@5 P@1 P@2 P@3 P@1 P@2 P@3

Gas

JointE 0.559 0.825 0.906 0.606 0.836 0.957 0.853 0.923 0.963 0.351 0.352 0.353

JointE-n 0.373 0.635 0.758 0.611 0.797 0.953 0.660 0.840 0.922 0.452 0.453 0.454

FPMC 0.283 0.284 0.528 0.256 0.577 0.794 0.351 0.656 0.849 0.367 0.462 0.516

LSTM 0.429 0.757 0.858 0.510 0.810 0.945 0.801 0.891 0.952 0.395 0.437 0.458

MLP 0.324 0.571 0.689 0.530 0.724 0.875 0.735 0.799 0.893 0.036 0.088 0.111

STELLAR - - - - - - 0.339 0.532 0.783 0.311 0.411 0.499

Koubei

JointE 0.476 0.750 0.938 0.528 0.832 0.931 0.850 0.921 0.980 0.627 0.629 0.630

JointE-n 0.410 0.665 0.756 0.445 0.778 0.843 0.513 0.718 0.876 0.575 0.576 0.578

FPMC 0.255 0.257 0.267 0.207 0.535 0.723 0.405 0.649 0.844 0.393 0.497 0.555

LSTM 0.382 0.741 0.840 0.482 0.824 0.910 0.813 0.894 0.925 0.336 0.399 0.421

MLP 0.379 0.660 0.669 0.456 0.783 0.820 0.775 0.876 0.892 0.073 0.103 0.122

STELLAR - - - - - - 0.339 0.605 0.873 0.310 0.439 0.516

Factorized Personalized Markov Chains (FPMC)[19]. Ren-
dle et al. embed users’ preferences and their personalized Markov

chain to provide next basket item prediction. The expected element

of behavior is predicted based on the latest behavior. The latent

dimensions is set to d =20, which is the same as our method.

Long Short-Term Memory Neural Networks (LSTM)[7].
LSTM is acknowledged as one of the best methods for predicting

sequential data. The inputs to LSTM are users’ behavior sequences

with the same length, and the output is the element to be predicted.

The implementation of LSTM is based on the machine learning

framework TensorFlow. The number of hidden-nodes is 100.

Multi-Layer Perceptron (MLP) is widely used in conventional
prediction systems and is an efficient method for task prediction.

We use all elements of behavior as the input layer and the expected

elements as the output. The network includes 3 hidden-layers and

each layer includes 100 hidden-nodes.

Spatial-Temporal Latent Ranking (STELLAR)[26] has been
widely used in POI prediction. It considers user-location interaction,

location-location interaction, and time-location interaction. It pre-

dicts the location and temporal pattern based on the latest behavior;

action and behavior information is not considered in this approach.

The latent dimensions is set to d =20, at which it approaches the

best results.

A widely adopted evaluation metric is the top-K similar candi-

dates for a target behavior, which verifies whether the true behavior

is in the results. The function hit@K(e) ∈ {0, 1} is used to indicate

whether the real behavior e is in the top-K recommendation list. Let

Etest denote the set of cases for prediction. We adopt the precision

metric P@K to quantify the prediction results.

P@K =

∑
e ∈Etest hit@K(e)

|Etest |
(15)

6.2 Evaluation on Behavior Prediction
The prediction on an event e = (u,a, r , l) is computed against Eq.10,

i.e.p(e |u) = p(a |u, l)p(r |u, l)p(l |Su ,Θ) orp(e |u, l) = p(a |u, l)p(r |u, l)
for some location l . A successful behavior result is justified by the

Table 3: Comparison for Behavior Prediction (P@1).

Gas Koubei

Hu (l ) (0, ∼) (0.5, ∼) (1, ∼) (0, ∼) (0.5, ∼) (1, ∼)

#users 19467 15516 7983 5059 3045 711

JointE 0.551 0.537 0.516 0.418 0.395 0.372

ARNN 0.588 0.581 0.567 0.461 0.412 0.391

Imprmt Ratio 6% 8% 9% 10% 4% 5%

ground truth behavior e being in the top-K recommendation list

sorted in a descending order based on the prediction values. The

results in the first three columns of Table 2 show that an increasing

K increases the performance for all methods. JointE has the best

performance. Consider the metric P@1, JointE outperforms the

other methods by 30% and 16% on two datasets, respectively. In

comparison with the other version of our method, JointE-n takes

into account general intervals with all behaviors of a user, JointE

learns location-specific temporal patterns that can reveals a user’s

specific behaviors.

Evaluation on Attention-based Model. We use the task of

behavior prediction to quantitatively evaluate JointE and ARNN

methods. We classify all users into three groups against Hu (l),
namely: (0,∼),(0.5,∼) and (1,∼), and conduct experiments on dif-

ferent settings. The performance comparison by P@1 is shown

in Table 3, where the last row shows the improvements of ARNN

over JointE. Comparing with JointE, ARNN is more appropriate to

capture a user’s dynamic preferences. Concretely, ARNN shows at

least an increase of 6% on Gas dataset and 4% on Koubei dataset
improvement of P@1.

To further compare our methods against the other methods, we

perform the following tasks.

Action Prediction. For a user u, this task is to predict the user

action type at a specific location l . The results in columns 4, 5, and

6 of Table 2 show that our methods outperform the other methods.

For example, JointE achieves 0.606 in Gas and 0.528 in KouBei at
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Figure 5: The comparison with respect to the prediction of
temporal intervals with the CDF of relative error.

metric P@1. We notice that all models perform better for Gas than
forKoubei . A reason could be that the functionalities of locations in

Gas are simpler than inKoubei , so that user actions at each location
are more stable.

Temporal Pattern Prediction. For a given user u, this task
predicts the point in time of next behavior at location l . We first

predict a temporal pattern r ∈ ℜt , namely, a period of time, and

then map it onto a certain time point. The experimental results in

columns 7, 8, 9 of Table 2 show that JointE outperforms other state-

of-the-art latent ranking methods and neural network models for

bothGas andKoubei . Although STELLAR can capture the temporal

effect in a concrete scale, such as day, week, and month, it does

not work well in capturing temporal intervals. The results show

that FPMC and STELLAR perform worse in the temporal pattren

perdiction since they predict temporal patterns given a user’s recent

checkd-in behavior that may be irrelevant to the next.

Our work is the first approach to propose an efficient method

able to accurately predict temporal patterns, which are consid-

ered difficult to predict. To further understand the exact tempo-

ral interval for a temporal pattern in JointE, we predict the next

time interval as a regression problem. For a user u, the predicted
temporal pattern by our method is transferred to a concrete time

point by the reverse function f −1(r ) = δ . The comparison method

we adopt is the linear regression (Regression). We use the metric

relative error = |
predict ion−truth

truth |. From the results in Figure 5,

we can see that our model captures the temporal interval effects

better.

Location Prediction. This task is to predict a user’s next visited
location; the results are listed at the last three columns of Table 2.

In the Koubei dataset, our methods outperform the other methods

with respect to different metrics. On the Gas dataset, JointE-n per-

forms the best with respect to metric P@1, while FPMC has a better

performance with respect to metrics P@2 and P@3. The reason is

that FPMC combines the user preference into the Markov transi-

tion function between locations. Comparably, our method embeds

multiple elements into location vectors, such as the action and the

temporal elements, so it is appropriate for a combined behavior

prediction.

Understanding the Semantics of Embedding. To help un-

derstand the prediction results, we extract semantic information

from the learned latent embeddings and discuss how the semantics

help solve UBP. We provide an intuitive view of the embeddings

for locations by visualizing them using tSNE[16].

(a) (b)

Figure 6: (a)The clustering results on locations based on the
learned embeddings in the Koubei dataset, k=10. (b) The dis-
tribution of users’ action types in two locations in theKoubei
dataset.

For the Koubei dataset, we cluster the locations into k clusters

based on their embeddings and color them differently by cluster

labels in Figure 6(a). We then randomly choose two locations from

different clusters in Koubei that are geographically close (the closer
locations have numbers that are closer) and count the frequencies of

actions associated with these locations for all users. From the results

listed in Figure 6(b), where the x-axis represents the actions and the
y-axis represents the proportion of actions, we can see that there are
different preferences with respect to actions at these locations. For

example, the proportion of Chinese restaurants in location #552 is

obviously higher than in location #554. Such differences are learned

in the embeddings so that they are classified into two clusters.

Those results show that the location-specific periodic informa-

tion is useful in enhancing the performance of behavior prediction

tasks and that learning joint representations is more effective for

modeling the elements of user behavior. The embeddings involve

not only the functional characters of locations but also the temporal

and action specificities.

6.3 Discussion on Parameter Influence and
Model Limitation

Solving the UBP problem highly relies on the dynamics of user

behaviors. We thus discuss how these characteristics influence the

performance of our method (JointE) on behavior prediction and

report the results for the two datasets in Figure 7 and Figure 8,

respectively. We first analyze the influence of the number of user

behaviors. The statistics in Figure 7(a) and Figure 8(a) show that

the number of behaviors follows a long-tail distribution. We con-

duct experiments on different behavior threshold for user selection.

The results in Figure 7(b) and Figure 8(b) show that an increasing

threshold leads to better results except that a very large threshold

may result in few users remaining in the dataset that then makes

the results unstable.

We then analyze the impact of uncertainty about user behaviors.

We classify all users into three groups against |Su |, namely: (∼

, 20], (20, 30] and (30,∼), and conduct experiments on different

settings. We first evaluate the influence of visited locations |Lu |.
As we increase |Lu |, the accuracy decreases gradually as shown

in Figure 7(c). Since there is more uncertainty in user behaviors

with larger |Lu |. However, this is not the case for Koubei dataset.
The accuracy is decreased with varying |Lu | from 2 to 5 but rises
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(a) Distribution of user behaviors (b) Influence of Behaviors (c) Influence of Visited Locations

(d) Influence of Entropy Hu (l ) (e) Influence of Entropy Hu (l , a) (f) Influence of Entropy Hu (l , r )

Figure 7: Influence of parameters and settings for the Gas dataset.

(a) Distribution of user behaviors (b) Influence of Behaviors (c) Influence of Visited Locations

(d) Influence of Entropy Hu (l ) (e) Influence of Entropy Hu (l , a) (f) Influence of Entropy Hu (l , r )

Figure 8: Influence of parameters and settings for the Koubei dataset.

when it is larger than 5 in Figure 8(c). This is because a large |Lu |
also means that the user has enough behaviors, thus the model

can enhance the prediction accuracy. Then we use the entropy

Hu (l) = −
∑
l ∈Lu pl logpl to quantify the uncertainty and present

the results for two datasets in Figures 7(d) and 8(d), respectively.

Generally, the performance for P@1 decreaseswhen the uncertainty

increases, and increases as the behavior threshold increases.

We also analyze how the uncertainty between location and

action influences the performance. Let P1 = {(l,a)|l ∈ L,a ∈
A}, P2 = {(l, r )|l ∈ L, r ∈ ℜt } represent all possible combina-

tions of locations and actions or patterns, respectively. The en-

tropy H (l,a) = −
∑
(l ,a)∈P1p(l,a) logp(l,a) represents the uncer-

tainty between location and action for user u, where p(l,a) =
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| {e=(u ,l ,a,t ) |e ∈Su ,e(l )=l ,e(a)=a } |
| {e=(u ,l ,a,t ) |e ∈Su } | . Similarly, the entropy H (l, r ) =

−
∑
(l ,r )∈P2 p(l, r ) logp(l, r ) quantifies the uncertainty between lo-

cation and pattern. We conduct experiments on different settings

for H (l,a) and H (l, r ). The results in Figures 7(e)-7(f) and 8(e)- 8(f)

show that, as the value of entropy increases, the performance de-

creases since there are more behavioral patterns in user behaviors.

The trends are opposite when the behavior threshold increases.

Our method predicts temporal-spatial behaviors by taking ad-

vantage of location functionality and temporal patterns. The crowd

behaviors reflect the functionality of a location. The location func-

tionality, on the other hand, influences individuals’ behaviors, and

plays an important role in predicting future behaviors. The pre-

dictive capability of our method is also limited to the choice of

temporal patterns; a temporal pattern represents a type of periodic

properties and each location is characterized by various types of

temporal patterns. Similarly, each location is characterized by var-

ious action types. A user preference can be learned well should

we have enough user behaviors. Thus our model has the power to

predict future event precisely.

7 CONCLUSION
In this paper, we investigate the problem of predicting a user

temporal-spatial behavior. To understand the semantics of the dif-

ferent behavior elements, a novel embedding model is proposed, in

which the embeddings of users, locations, and actions are learned

in the same continuous space. Location functionality is the critical

factor for connecting different elements of the behavior, which is

learned from crowd behaviors. We introduce a temporal pattern

scheme to represent how often users visit locations. We conduct

experiments against two representative datasets and the results

show that our approach outperforms state-of-the-art methods. We

also analyze the semantics of embeddings from the perspective of

location.
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