
On the Complexity of Authorization in RBAC
under Qualification and Security Constraints

Yuqing Sun, Qihua Wang, Ninghui Li, Senior Member, IEEE,

Elisa Bertino, Fellow, IEEE, and Mikhail (Mike) J. Atallah, Fellow, IEEE

Abstract—In practice, assigning access permissions to users must satisfy a variety of constraints motivated by business and security

requirements. Here, we focus on Role-Based Access Control (RBAC) systems, in which access permissions are assigned to roles and

roles are then assigned to users. User-role assignment is subject to role-based constraints, such as mutual exclusion constraints,

prerequisite constraints, and role-cardinality constraints. Also, whether a user is qualified for a role depends on whether his/her

qualification satisfies the role’s requirements. In other words, a role can only be assigned to a certain set of qualified users. In this

paper, we study fundamental problems related to access control constraints and user-role assignment, such as determining whether

there are conflicts in a set of constraints, verifying whether a user-role assignment satisfies all constraints, and how to generate a valid

user-role assignment for a system configuration. Computational complexity results and/or algorithms are given for the problems we

consider.

Index Terms—Access control, RBAC, formal methods, computational complexity.

Ç

1 INTRODUCTION

ROLE-BASED access control (RBAC) has established itself as
a well-accepted model for access control in many

organizations and enterprises. The notion of roles adds a
level of indirection to simplify the management of the
many-to-many relation between users and permissions.
Many companies and institutes with a large number of
users and different security requirements are using or
considering migrating to RBAC systems.

An advantage of RBAC is that one can specify constraints
to enforce higher level security objectives. For instance,
mutually exclusive role constraints require that a user cannot
have more than k roles in a certain set, where k is an integer.
They can be used to enforce separation of duty policies [13].
These constraints are known as Static Separation of Duty
constraints in the ANSI RBAC standard [3]. Mutually
exclusive role constraints are also supported by major real-
world RBAC systems, such as IBM Tivoli Identity Manager
[10]. In its latest version (v5.1), Tivoli Identity Manager
introduces Separation of Duty rules, which are essentially
the mutually exclusive role constraints in this paper.

Role-based constraints can also be used to enforce
practical restrictions or business requirements in addition
to security policies. For example, a role-cardinality constraint
may state that role rmust be assigned to at least k users. Such

a constraint can be used when the company requires
k instances of the task represented by role r be performed
simultaneously (in this case, at least k members of role r are
needed). For another example, prerequisite constraints,
which require that a member of a role r must also be a
member of some other roles, can be used in cases, where a
number of responsibilities are prerequisites for a certain task.

Even though role-based constraints have been widely
studied, it is somewhat surprising that little attention has
been paid on the interaction among such constraints.
Companies and institutes have a variety of security and
practical needs, which indicates that different types of
constraints may coexist in a system. Those constraints may
conflict with each other, which makes it impossible to
assign roles to users while satisfying all constraints. For
example, a prerequisite constraint in a system may require
that any member of role r1 must be a member of r2 as well,
while there is another constraint in the system stating that
r1 and r2 are mutually exclusive. In this case, we cannot
assign r1 to users without violating either the prerequisite
constraint or the mutually exclusive role constraint. In this
paper, we perform a thorough analysis on the consistency
problem on different types of role-based constraints.

In RBAC systems, users gain permissions through role
memberships. A fundamental problem in RBAC is assigning
roles to users in an appropriate manner. Besides role-based
constraints, a valid user-role assignment should also meet
certain restrictions on users, which are called user-based
constraints in this paper. A natural type of user-based
constraints is user-qualification constraints. In real world, a
user may be asked to perform a task only if she is qualified to
do so, and a task or a job responsibility is normally
represented as a role in RBAC. A user-qualification con-
straint requires that a role, which is associated with a
qualification requirement, can only be assigned to those users
who satisfy the requirement. For example, we may have a
role that should be taken only by users with adequate

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2011 883

. Y. Sun is with the Department of Computer Science and Technology,
Shandong University, Shunhua Road, High-Tech Zone, Jinan, Shandong,
China 250100. E-mail: sun_yuqing@sdu.edu.cn.

. Q. Wang is with the IBM Almaden Research Center, 650 Harry Road, San
Jose, CA 95123. E-mail: qwang@us.ibm.com.

. N. Li, E. Bertino, and M.J. Atallah are with the Department of Computer
Science, Purdue University, 305 N. University Street, West Lafayette, IN
47907. E-mail: {ninghui, bertino, mja}@cs.purdue.edu.

Manuscript received 10 Nov. 2008; revised 13 Dec. 2009; accepted 6 May
2010; published online 24 Sept. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2008-11-0170.
Digital Object Identifier no. 10.1109/2010.55.

1545-5971/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

accreditation credentials as well as more than 500 h training
and three years similar work experiences. Another type of
user-based constraint is user-capacity constraints, which
restrict the number of roles a user can be assigned
to. Assigning too many roles to a user may make her
overwhelmed and/or increase the chance of frauds.

To the best of our knowledge, we are the first to study the
user-role assignment problem in RBAC models with both
role-based and user-based constraints. Considering user-
based constraints such as user qualifications makes our
settings closer to practice. Since large companies can easily
have thousands of users and hundreds of roles in their RBAC
systems, it is important to understand the complexity of user-
role assignment when constraints are present.

Our contributions are summarized as follows:

. We define the problem of user-role assignment under
several kinds of constraints motivated by business
and security requirements. In our definition, a valid
user-role assignment must not violate any role-based
or user-based constraint. We consider three types of
role-based constraints; they are prerequisite con-
straint, mutual exclusion constraint, and role-cardin-
ality constraint. These constraints can be verified
efficiently, and they can be used to enforce a variety of
access control policies, such as separation of duty
policies and resiliency policies. User-based con-
straints include qualification constraint and user-
capacity constraint. In particular, a user is qualified
for a role only if his/her qualification satisfies the
role’s requirements. The user-based constraints we
define capture practical needs in real world.

. We study the Constraint Consistency Problem
(CCP), which asks whether the existing role-based
constraints are consistent, i.e., whether it is possible
to assign every role to at least one user while
satisfying all given role-based constraints. We show
that CCP is NP-complete, in general, with respect to
the size of roles and the number of constraints. To
better understand how different kinds of role-based
constraints may affect the complexity of CCP, we
study the computational complexities of CCP in
different subcases, where only a subset of the three
types of role-based constraints are used and/or
certain constraints take special forms.

. We study the Assignment Feasibility Problem (AFP),
which asks whether there exists a valid user-role
assignment under a given configuration with both
role-based and user-based constraints. We show that
AFP is NP-complete with respect to the size of
configuration, which consists of a set of users, a set
of roles, and a number of constraints. Similar to the
study of CCP, we study the computational complex-
ities of AFP in different subcases.

. We study the Assignment Generation Problem
(AGP), which returns a valid user-role assignment
(if any) for a given configuration. Even though AGP
is NP-complete, many instances of it may still be
efficiently solvable in practice. We present an
algorithm for AGP. Our algorithm takes advantages
of the observation that AGP can be efficiently

formulated as the Boolean satisfiability problem
(SAT). This enables us to employ existing SAT
solvers to solve the problem and benefit from several
decades of research in designing SAT solvers.

The rest of the paper is organized as follows: We define
role-based constraints and study their consistency in
Section 2. Then, we introduce user-based constraints and
study the Assignment Verification Problem in Section 3. We
study the Assignment Feasibility Problem and the Assign-
ment Generation Problem in Sections 4 and 5, respectively.
We discuss a possible extension to our definition of the
assignment problem in Section 6. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 ROLE-BASED CONSTRAINTS AND THEIR

CONSISTENCY

In this section, we introduce constraints on roles and
discuss the consistency problem among these constraints.
We consider three types of role-based constraints. They are
role-cardinality, prerequisite, and mutual exclusion con-
straints. These constraints (or their special forms) have been
considered in existing literature [16], [7], [13], [5].

Role-cardinality(RC)constraints. A role-cardinality con-
straint is represented as RCðr; cl; cuÞ, where r is a role, and
cl; cu 2 ½0;1Þðcl � cuÞ are called the lower bound and the
upper bound of role r, respectively.

A cardinality constraint RCðr; cl; cuÞ is satisfied if and
only if the role r is assigned to at least cl users and no more
than cu users. In practice, we require a role be assigned to at
least a certain number of users so as to meet workload or
resiliency requirements. In contrast, the upper bound in a
constraint makes sure that the role is not assigned to too
many users due to resource restrictions or to comply with
the principle of least privileges. When cu ¼ 1, there is no
limitation on the maximum number of users assigned to the
role. Cardinality constraints were suggested in the influen-
tial RBAC96 paper [17].

Prerequisite (PRE) constraints. A prerequisite constraint
is represented as PREðcond; rÞ, where r is a role, and cond is
called the prerequisite condition of r and it is an expression
consisting of roles, conjunctive operator ^, and disjunctive
operator _.

A prerequisite constraint PRE ðcond; rÞ is satisfied if and
only if for any member u of role r, the role membership of u
satisfies cond. For example, PREðr1 ^ r2; r3Þ is satisfied if
and only if any member of r3 is also a member of roles r1

and r2. Without loss of generality, we assume that every
role has at most one PRE constraint.

Prerequisite constraints state that if a user takes a certain
responsibility, she is also required to take some other
responsibilities. In particular, role hierarchy can be repre-
sented and enforced using prerequisite constraints. For
example, assume that r1 is senior to r2, which is, in turn,
senior to r3 and r4. We can use two prerequisite constraints
to represent such a hierarchy; they are PREðr2; r1Þ and
PREðr3 ^ r4; r2Þ. With the two constraints, anyone who is a
member of the “senior” roles must also be members of those
“junior” roles (but not the other way around). In the rest of
the paper, we do not explicitly discuss role hierarchy. But

884 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2011

whenever we consider prerequisite constraints, our results
apply to cases with role hierarchy as well.

Mutual exclusion(MER)constraints. A mutual exclusion
constraint is represented as MERðR; kÞ, where R is a set of
roles and k 2 ½2; jRj� is an integer (jRj is the number of roles
in R).

A mutual exclusion constraint MERðR; kÞ is satisfied if
and only if no user is assigned to k or more roles in R. When
k ¼ 2, this constraint indicates that a user can be assigned to
at most one role in R (i.e., roles in R are mutually exclusive
with each other). MER constraints are often used to enforce
separation of duty policies [13], [5]. Furthermore, IBM
Tivoli Identity Manager supports MER constraints under
the name of separation of duty rules [10].

2.1 The Constraint Consistency Problem

We may have different types of constraints in a system and
sometimes it is impossible to satisfy all of them. In those
cases, we say that the constraints conflict with each other.
The following two examples illustrate two cases of conflicts:

Example 1. Role-cardinality constraints may conflict with
prerequisite constraints. When r1 is the prerequisite of r2

(which may be because of a role hierarchy relationship),
then the number of users having r1 must be greater than
or equal to the number of users having r2. If the role-
cardinality constraints have the lower bound of r2 being
greater than the upper bound of r1, then a conflict occurs.
The following is such an example:

C1 ¼ fRCðr1; 1; 1Þ;RCðr2; 2; 2Þ;PREðr1; r2Þg:

The constraint RCðr2; 2; 2Þ requires r2 be assigned to
exactly two users. According to PREðr1; r2Þ, any member
of r2 must be a member of r1. Hence, the two members of
r2 are also members of r1, which indicates that there are
at least two members of r1. This violates that constraint
RCðr1; 1; 1Þ, which states that r1 can be assigned to only
one user.

Example 2. Mutual exclusion constraints may conflict with
prerequisite constraints. A prerequisite constraint will
require certain role memberships to be held together,
whereas mutual exclusion constraints prevent certain
role memberships to be held together. When they apply
to the same set of roles, a conflict occurs. The following is
an example:

C2 ¼ fRCðr3; 1;1Þ;MERðfr1; r2g; 2Þ;PREðr1 ^ r2; r3Þg:

The constraint RCðr3; 1;1Þ requires r3 be assigned to at
least one user. According to PREðr1 ^ r2; r3Þ, any
member of r3 must be a member of both r1 and r2.
However, MERðfr1; r2g; 2Þ requires that no user can be a
member of both r1 and r2. Therefore, it is not possible to
satisfy all the three constraints in C2.

Determining whether there are conflicts in a set of
constraints is a fundamental problem and we will study this
problem in this section. When conflicts are detected in the
constraints, there are a couple of potential approaches to
resolve such conflicts. One way is to ask administrators to
manually remove a constraint from each conflicting pairs.
Another way is to assign priorities to constraints so that

when conflicts occur between two constraints, the one with
higher priority will automatically override the one with
lower priority. Detailed discussion on the strategies for the
resolution of conflicts is beyond the scope of this paper.

Definition 1 (Consistency). Given a set of roles R, we say that
a set C of constraints are consistent if and only if there exist a
set U of users and a user-role assignment UR � U �R such
that every role in R is assigned to at least one user in UR and
no constraint in C is violated by UR.

The problem of determining whether a set of constraints are
consistent is called the CCP.

In the above definition, we require that every role in R is
assigned to at least one user. This can be viewed as having
an RC constraint for each role in R such that the lower
bound of any role is at least one. Without such a
requirement, any CCP instance is trivially true: a user-role
assignment may simply not assign any user to those roles
appearing in conflicting constraints; in other words, for any
pair of constraints c1 and c2 in C, if c1 and c2 cannot be
satisfied at the same time, the assignment keeps the roles
appearing in c1 and c2 empty.

In the CCP problem, we are considering whether a set of
constraints are satisfiable with the flexibility of using as
many users as one wants to. This is about whether a set of
role-based constraints are fundamentally conflicting. Even
when they are consistent, there may not be a way to assign
all roles to users when the set of users and their
qualifications and capacities are fixed. The feasibility of
assigning roles to a fixed set of users will be studied in
Section 4.

In the following, we study the computational complexity
of CCP. The constraints we consider are the three types of
constraints (i.e., RC, PRE, and MER) introduced earlier in
this section. In the most general case, all three types of
constraints are used. But in practice, we sometimes only use
a subset of the three types of constraints, and we sometimes
use only the limited forms of these types of constraints,
making the consistency problem easier to solve. These
limited forms are given below.

. RC constraints that do not have upper bound
requirements (i.e., cu ¼ 1), represented as RC : lower.

. MER constraints with k ¼ 2, represented as MER : 2.

. PRE constraints whose prerequisite condition only
uses conjunctive operator ^, represented as PRE :
conj

As stated earlier, role hierarchy can be encoded
with PRE constraints that use conjunction only.

To represent a subcase of CCP, we list the constraints that can
be used in the subcase and whether they are in special form
within a pair of braces. For example, CCPhRC : lowerþ
MERi denotes the subcase, where only RC constraints with
lower bound requirements and mutual exclusion constraints
are allowed. CCPhRCþMERþ PREi is the most general
case. Note that all the subcases of CCP have RC constraints
with cl � 1 for every role, because CCP requires each role be
assigned to at least one user.

Theorem 1. The computational complexities of CCP and its
subcases are given in Fig. 1.

SUN ET AL.: ON THE COMPLEXITY OF AUTHORIZATION IN RBAC UNDER QUALIFICATION AND SECURITY CONSTRAINTS 885

From Fig. 1, we can see that certain types of constraints
do no conflict with each other. For those combinations of
constraints that may conflict, we have given the computa-
tional complexity of CCP. The bottom-right cell in the table
represents the most general case of CCP.

The proof of Theorem 1 consists of four parts. First, we
show that certain combinations of constraints cannot have
conflicts. Second, we show that CCP is in NP in general.
Third, we prove that CCP hRC : lowerþ PRE : conjþ
MERi and CCP hRCþ PRE : conji are in P. Finally, we
show that CCP hRC : lowerþ PREþMER : 2i;CCP hRC þ
PREi, and CCP hRCþ PRE : conjþMER : 2i are NP-
hard. Other results in Fig. 1 can be implied from the proved
cases. In the rest of this section, we provide the first three
parts of the proof of Theorem 1; the proofs to the
intractability results in Theorem 1 are given in Appendix A.

First, we prove the always-consistent cases in Fig. 1.

Lemma 2. The answer to CCP is always “yes” when there is no
PRE constraint.

Proof. When there is no PRE constraint, roles can be assigned
independently, i.e., assigning one role to a user does not
require any additional assignments of other roles to the
same user. Hence, different roles can be assigned to
different users without violating MER constraints. More
specifically, we can construct a user-role assignment UR
such that every user has exactly one role and for every RC
constraint RCðcl; cu; rÞ; r is assigned to cl users. In this
case, every RC constraint is satisfied, and since every user
has only one role, no MER constraint is violated. tu
We note that since role hierarchies are encoded as PRE

constraints, the above result does not apply to RBAC
systems with role hierarchies.

Lemma 3. The answer to CCP is always “yes” when there is no
MER constraint and all the RC constraints have lower bound
requirements only.

Proof. When there is no MER constraint, we may assign as
many roles to a user as needed to satisfy PRE constraints.
In the extreme case, we assign all roles to a user, and as
long as we have enough such users, the lower bound
requirements in the RC constraints will be satisfied.

More specifically, let x be the largest value of the lower
bounds among the RC constraints. We create x users and
assign all the roles in R to each of them. Since the RC
constraints have no upper bound requirement and every
role is assigned to x users (which is no smaller than any
lower bound), all the RC constraints are satisfied. Also,
every prerequisite condition is satisfied, because every
user is a member of all the roles appearing in the condition,
and thus, the user must satisfy the condition. tu

Next, we prove that CCP is in NP in general and two of
its subcases are in P.

Lemma 4. CCP is in NP.

Proof. A nondeterministic Turing machine may guess a UR,
and then, verify whether every role is assigned to at least
one user and whether all constraints are satisfied. The
size of UR is bounded by jUj � jRj. It is clear that
determining whether a UR violates a MER , PRE, or RC
constraint can be done in polynomial time. Hence, CCP
is in NP. tu

Lemma 5. CCP hRC : lowerþ PRE : conjþMERi is in P. In
other words, CCP is in P, if all RC constraints only have lower
bound requirements, the prerequisite conditions of all PRE
constraints use conjunctive operators only, and MER
constraints may take general form.

Proof. First, we need to check whether the PRE constraints
conflict with the MER constraints. If there is no conflict
between the two types of constraints, then for every role
riði 2 ½1; n�Þwith prerequisite requirements, we can assign
ri and its prerequisite roles to a userui. We may then create
a number of users identical to ui for every i 2 ½1; n�, so as to
satisfy lower bound requirements in RC constraints.

More specifically, to determine if the answer to such a
CCP instance is “yes,” we construct a user-role assign-
ment UR in the following way.

For every PRE constraint PREðcond; rxÞ, we compute
the set Sx of roles any member u of rx must have. LetRx be
the set of roles appearing in cond. Since cond uses only
conjunctive operators, all the roles inRx must be assigned
to u. We callRx the set of prerequisite roles for rx. We add
Rx and rx toSx. Also, note that a role ri inRx may also have
a PRE constraint, and thus, the set Ri of prerequisite roles
of ri must be added into Sx as well. We do this recursively,
until Sx no longer grows. For every MER constraint
MERðA; kÞ, we compute the intersection of Sx andA. Let t
be the size of the intersection. In order to assign rx to a user,
we have to assign at least t roles in A to the user. If t � k,
there is no way for us to assign rx to a user without
violating either PREðcond; rxÞ or MERðA; kÞ. Hence, the
answer to the CCP instance is “no.” On the contrary, if for
every MER constraint we have t < k, we create a user ux
and assign the set Sx of roles to ux.

Next, if we finish processing all PRE constraints
without answering “no” to the CCP instance, then for
every role ri that has not been assigned to any user (ri does
not have a PRE constraint in this case), we create a fresh
user ui and assign ri to ui. In this case, every role has been
assigned to at least one user and no MER constraint
is violated.

886 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2011

Fig. 1. Computational complexities of different subcases of CCP.

Finally, let cm be the largest value of the lower bounds
in all the RC constraints. We make cm copies of all the
users that have been created. In this case, all the RC
constraints are satisfied. And since the original user
assignment does not violate any PRE or MER constraint,
UR does not violate any constraint after the copies are
made. The answer to the CCP instance is “yes.” tu

Lemma 6. CCP hRCþ PRE : conji is in P. In other words,
CCP is in P, if no MER constraint is used, the prerequisite
conditions of all PRE constraints use conjunctive operators
only, and RC constraints may take general form.

Proof. When there is no MER constraints, a user can have as
many roles as needed to satisfy PRE constraints. We just
need to check if there exists a role r, such that the lower
bound of r is larger than the upper bound of one of its
prerequisite roles. If such a role exists, it is not possible to
satisfy all constraints. Otherwise, the answer to the CCP
instance is “yes.”

Similar to the proof to Lemma 5, for every PRE
constraint PREðcond; rxÞ, we recursively compute the set
S0x of prerequisite roles of rx. We then check if the upper
bound of any role in S0x is smaller than the lower bound
of the role rx. Since only conjunction is used in cond,
every role in S0x is required for a user to be assigned to rx.
For every role ri 2 S0x, let cui be the upper bound of ri.
Since there can be at most cui members of ri, there can be
no more than cui members of rx. If there exists a role
rj 2 S0x, such that cuj < clx , where clx is the lower bound
of rx, then it is impossible to meet the lower bound of rx
without violating the upper bound requirement of rj. In
this case, the answer to the CCP instance is “no.”
Otherwise, if such a role rj does not exist for any PRE
constraint, then we can construct a user-role assignment
UR as follows:

Without loss of generality, assume that ½r1; r2; . . . ; rn�
is a ranked list in descending order of the values of
lower bounds of roles. Let li be the lower bound of ri,
where i 2 ½1; n�. We have l1 � l2 � � � � � ln. We create l1
users u1; . . . ; ul1 . Next, starting from i ¼ 1 to i ¼ n, we
do the following:

If ri has not been assigned to any user, we assign ri to
u1; . . . ; uli . For every rj 2 S0i (recall that S0i is the set of
prerequisite roles of ri), if rj has not been assigned to any
user yet (in this case, we must have j > i), we also assign
rj to u1; . . . ; uli , and according to the assumption, the
upper bound of rj is no less than li. Also, j > i implies
that lj � li. Hence, the lower bound requirement of rj has
been satisfied by our assignment.

In the above construction, we have assigned every role
ri to at least li users and no upper bound requirements is
violated, and all PRE constraints are satisfied. Therefore,
the answer to the CCP instance is “yes.” tu

3 THE USER-BASED CONSTRAINTS

In the last section, we defined a number of role-based
constraints, and studied the problem of checking whether a
set of role-based constraints are consistent. In RBAC, a role
normally represents a task or a job responsibility, and roles
must be assigned to human users so as to be useful. In
practice, not every user is qualified to perform every task
and there is a limit on how much work a user can/should

perform. In this section, we define such practical restrictions
on assigning roles to human users as user-based constraints.
A valid user-role assignment must satisfy the role-based
constraints as well as the user-based constraints.

User-role qualification (URQ) relation. In practice, every
job or task responsibility represented by a role may have
qualification requirements. A user can be assigned to a role
only if she meets the qualification requirements of the role.

For instance, we may assume that every human user in
the system has a set of qualification attributes. Examples of
qualification attributes are diploma, citizenship, training
specialty, training period, certification, etc. In a system
configuration, all attributes of a user are assigned values
from corresponding domains. Every role has a qualification
requirement on the attributes of its members. A qualifica-
tion requirement may be represented as an expression
consisting of user attributes and operators in f:;_;^g. A
term can be in the form of ðai op cÞ or ai 2 S, where ai is an
attribute, op 2 f¼; 6¼; <;>;�;�g; c is a constant value, and S
is a set of constant values. The following are examples of
qualification requirements on roles:

. ðDegree � ‘‘Bachelor’’Þ ^ ðWorkExperience � 3 yearsÞ

. Specialty 2 f‘‘OSsecurity’’; ‘‘DBsecurity’’g

. ðLocation ¼ ‘‘NewYorkCity’’Þ ^ :ðPosition 2
f‘‘Manager’’; ‘‘Director’’gÞ

We say that a user u is qualified for a role r if and only if the
attributes of u satisfy the qualification requirements of r. We
introduce the notion of user-role qualification relation to
represent the information about which users are qualified
for which roles.

Definition 2 (User-Role Qualification Relation). Given a
set of users U and a set of roles R;URQ ¼ fðu; rÞ j
ðu is qualified for rÞ ^ u 2 U ^ r 2 Rg is called the user-
role qualification relation.

We would like to point out that user-role qualification
relation is different from user-role assignment. ðu; rÞ 2 URQ
only implies that u is qualified to be assigned to r, but it is
possible that u is never assigned to r due to reasons, such as
security constraints or workload consideration.

Also, we emphasize that the results presented in the rest
of the paper do not depend on the concrete way on how
user attributes and role qualification requirements are
specified, nor do the results depend on how requirement
satisfaction is determined. The examples given earlier in
this section represent a potential way to specify user
attributes and role qualification requirements, which aims
to give the readers a better understanding on how user-role
qualification relation might be specified and computed in
practice. In the rest of the paper, we abstract away such
details and assume that the user-role qualification relation
is given in the configuration.

User-capacity (UC)constraints. A user-capacity con-
straint is represented as UCðu; cÞ, where u is a user, and
c 2 ½0;1Þ is called the capacity of u.

A UC constraint UCðu; cÞ is satisfied if and only if u is
assigned to no more than c roles. Different users may have
different capacities. For instance, a full-time employee is
able to take more responsibility than a half-time employee.
When c ¼ 1, there is no restriction on the number of roles u
may be a member of.

SUN ET AL.: ON THE COMPLEXITY OF AUTHORIZATION IN RBAC UNDER QUALIFICATION AND SECURITY CONSTRAINTS 887

There are a couple of reasons why people may want to
restrict the maximum number of roles a user is assigned to.
The first one is security concern. If a user is assigned to too
many roles, the consequence would be severe if she abuses
her privileges. Second, there is a limit on the workload that
a human user may assume. Giving too much responsibility
to a user may make certain tasks end up unfinished.

Finally, we would like to point out that it is possible to
extend UC constraints to a more general form. In the above
definition, we implicitly assume that every role has the
same risk and/or workload, which may not be the case in
certain occasions. A potential extension is to associate a
weight to each role and require that the sum of the weights
of the roles assigned to a user cannot exceed a certain
threshold (i.e., the user’s capacity). Such an extension will
be discussed in Section 6.

3.1 The Assignment Verification Problem

We have introduced both role-based and user-based
constraints. A natural problem that arises is to check
whether a user-role assignment satisfies all the constraints
in the system. In this section, we formally define and study
such a problem.

To begin with, we define the configuration of a system.

Definition 3 (Configuration). A configuration is given as a
tuple hU;R;C; URQi, where U is a set of users, R is a set of
roles, URQ � U �R defines a user-role qualification relation.
C is a set of constraints and each constraint takes one of
the form in set fMERðRs; kÞ;RCðr; cl; cuÞ;PREðcond; rÞ;
UCðu; cÞg, where Rs � R, r 2 R, u 2 U , 1 � cl � cu, c � 0,
and k > 1.

In the above definition, user-role qualification relation
URQ is given separately from other constraints in C. We
do so because URQ is a relation determined by the
qualification requirements of roles and the attributes of
users, while constraints in C are requirements specified by
administrators.

Definition 4 (Valid User-Role Assignment). Given a
configuration hU;R;C; URQi and a user-role assignment
UR � U �R, we say that UR is valid under hU;R;C; URQi
if and only if all the following are true:

. Every role r 2 R is assigned to at least one user.

. UR � URQ. In other words, every role is assigned
only to qualified users.

. No constraint in C is violated.

Similar to Definition 1, in Definition 4, we require that
every role must be assigned to at least one user so that the
tasks represented by the role can be performed.

Definition 5 (AVP). Given a configuration hU;R;C; URQi
and a user-role assignment UR, the Assignment Verification
Problem (AVP) determines whether UR is valid under
hU;R;C; URQi.

The following theorem states that AVP is in P:

Theorem 7. AVP can be solved in quadratic time.

Proof. To determine whether the given user-role assign-
ment UR is valid under hU;R;C; URQi, we need to check
three things: 1) whether every role is assigned to at least

one user; 2) whether the assignment is compliant with
the qualification relation (i.e., UR � URQ); and 3) no
constraint in C is violated. It is clear that the first one can
be checked in linear time and the second can be checked
in quadratic time. And according to the definitions of
PRE, MER , RC, and UC constraints, checking whether a
constraint is satisfied by a user-role assignment can be
done in linear time as well. There are no more than
n constraints, where n is the size of input. Therefore,
AVP can be solved in quadratic time. tu

4 THE ASSIGNMENT FEASIBILITY PROBLEM

Given a configuration hU;R;C; URQi, our ultimate goal is
to find a valid user-role assignment for hU;R;C; URQi.
However, not every configuration has a valid assignment.
For example, if Alice is the only user who is qualified for
roles r1 and r2 and there is a constraint MERðr1; r2Þ, then
there is no way to assign both r1 and r2 to a qualified user
without violating the mutual exclusion constraint. Config-
urations, not having any valid user-role assignment, are
probably not what designers desire. The AFP problem
discussed in this section performs a sanity check on a given
configuration and answers the fundamental problem of
whether there exists a feasible solution.

Definition 6 (AFP). Given a configuration hU;R;C; URQi, the
AFP is to determine whether there exists a valid user-role
assignment under hU;R;C; URQi.

Next, we study the computational complexity of AFP.
We will show that AFP in the most general case (i.e., with
all four types of constraints) is NP-complete. Similar to the
study of CCP in Section 2, in order to understand how
different types of constraints affect the computational
complexity of AFP, we consider all subcases, where only a
subset of the four types of constraints in C are allowed.
Furthermore, RC, PRE, and MER constraints can take
special forms. We will study these special cases as well.
Note that we always have RC constraints with lower bound
requirements in the subcases, as AFP requires that every
role is assigned to at least one user, which can be viewed as
every role has a lower bound that is at least one.

Also, AFP is at least as difficult as CCP, because
subcases of CCP can be reduced to corresponding subcases
of AFP. When reducing a CCP instance to an AFP instance,
we just need to have enough number of users in the
configuration and make every user qualified for every role
in the AFP instance.

Theorem 8. The computational complexities of AFP and its
subcases are given in Fig. 2.

The proof of Theorem 8 is done in three parts. First of all,
we show that AFP is in NP in general. Second, we prove
that AFP hRC : lowerþ PREi and AFP hRCþUCi are in P.
Finally, we show that AFP hRC : lowerþUCþ PRE :
conji;AFP hRC : lowerþMER : 2i, and AFP hRCþ PRE :
conji are NP-hard. Other results in Fig. 2 can be implied
from the proved cases. In the rest of this section, we present
the first two parts of the proof of Theorem 8. The proof of
the intractable results of Theorem 8 is given in Appendix B

888 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2011

Lemma 9. AFP is in NP.

Proof. Given a configuration hU;R;C; URQi, a nondetermi-

nistic Turing Machine can guess an assignment UR and

verify whetherUR is a valid assignment. The size ofUR is

bounded by jUj � jRj, and according to Theorem 7,

verifying whether UR is a valid assignment can be done

in polynomial time. Therefore, the problem is in NP. tu
Next, we prove the two polynomial-time solvable

subcases of AFP.
To prove that AFPhUCþRCi is in P, we reduce the

problem to the MAXIMUM FLOW problem. The MAXIMUM

FLOW problem is to find a feasible flow through a single-

source, single-sink flow network that is maximum. A flow is

feasible if it does not exceed the capacity on each edge of the

flow network, and the total amount of incoming flows is

equivalent to the total amount of outgoing flows on every

node of the network except source and sink. The incoming

flow of the source and outgoing of the sink is zero, while the

outgoing flow of the source and incoming flow of the sink

are equivalent to the flow. MAXIMUM FLOW is well solved

and many polynomial time algorithms have been proposed

for it, such as the Ford-Fulkerson algorithm [6].

Lemma 10. AFPhUCþ RCi is in P.

Proof. We reduce the problem to MAXIMUM FLOW, which

is in P. Given a configuration hU;R;C; URQi, we

construct a flow network N in the following way (see

also Fig. 3):

. For each ri 2 R, we create a node ai. There is an
edge between the source s and ai. The capacity of
the edge is 1 if there is no (explicit) role-
cardinality constraint on ri; otherwise, if there is
a constraint RCðri; cl; chÞ, the capacity of the edge
is cl, which is denoted as RClðriÞ in Fig. 3.

. For each uj 2 U , we create a node bj. There is an
edge between bj and the sink t. The capacity of the
edge is infinite if there is no user-capacity
constraint on uj; otherwise, if there is a constraint
UCðuj; cÞ, the capacity of the edge is c, which is
denoted as UCðujÞ in Fig. 3.

. There is an edge between ai and bj if and only if
ðuj; riÞ 2 URQ. The capacity of the edge is 1.

Now, we prove that there is a valid assignment under
hU;R;C; URQi if and only if there is a flow f from s to t
such that f ¼ �ri2RRClðriÞ.

On the one hand, assume that there is a valid
assignment UR under hU;R;C; URQi. For every role
ri 2 R, if there is a constraint RCðri; cl; chÞ and ri is
assigned to more than cl users, then we remove some
assignments regarding ri so that ri is assigned to exactly
cl users in UR; otherwise, if there is no (explicit) role-
capacity constraint on ri and ri is assigned to more than
one user, then we remove some assignments regarding ri
so that ri is assigned to exactly one user in UR. It is clear
that after the modification, UR is still a valid assignment.

Now, we construct a flow f according to UR in the
following way:

. For every edge e between bj and t, there is a flow
fe ¼ kj, where kj is the number of roles uj is
assigned to.

Since UR is a valid assignment, if there is a
constraint UCðuj; cÞ; uj is assigned no more than
c roles in UR; otherwise, if there is no such a
constraint, the capacity of e is infinite. Therefore,
kj is no larger than the capacity of e.

. For every edge e between ai and bj, if ðuj; riÞ 2
UR, then there is a flow fe ¼ 1 on e.

SUN ET AL.: ON THE COMPLEXITY OF AUTHORIZATION IN RBAC UNDER QUALIFICATION AND SECURITY CONSTRAINTS 889

Fig. 2. Computational complexities of different subcases of AFP.

Fig. 3. Reducing AFPhUC;RCi to a flow network. RClðrÞ ¼ cl if there is
an explicit RC constraint RCðr; cl; cuÞ; otherwise, RClðrÞ ¼ 1. UCðuÞ ¼ c
if there is a constraint UCðu; cÞ; otherwise, UCðuÞ ¼ 1.

According to the previous step, the total
amount of outgoing flows for bj is equivalent to
the number of roles uj is assigned to in UR. With
the current step, the total amount of incoming
flows for bj is equivalent to the total amount of
outgoing flows for bj.

. For every edge e between s and ai, there is a flow
fe ¼ RClðriÞ.

According to the previous step, the total
amount of outgoing flows for ai is equivalent to
the number ni of users ri is assigned to in UR. In
UR, if there is a constraint RCðri; cl; chÞ, then
ni ¼ cl; otherwise, ni ¼ 1. According to the con-
struction of the flow network, we have
ni ¼ RClðriÞ, which indicates that the total
amount of the incoming flows is equivalent to
that of the outgoing flows on ai.

In general, we have proved that the flow f is a valid
flow during our construction. Also, it is easy to see from
the last step of the construction that f ¼ �ri2RRClðriÞ.

On the other hand, assume that there is a flowf from s to
t such that f ¼ �ri2RRClðriÞ. We construct an assignment
UR such that ðuj; riÞ 2 UR if and only if there is a flow from
ai to bj in f . Since f ¼ �ri2RRClðriÞ, it must be the case that
every edge between s and ai is fully loaded. According to
the construction of the flow network, if there is a constraint
RCðri; cl; chÞ, then RClðriÞ ¼ cl, and thus, ri is assigned to
exactly cl users in UR. Also, if there is a constraint
UCðuj; cÞ, the capacity of the edge between s and bj
guarantees that the total amount of outgoing flow of bj is no
more than c. Therefore, uj is assigned to no more than
c roles in UR. Finally, according to the construction of the
flow network, if there is an edge from ai to bj , then
ðuj; riÞ 2 URQ, which indicates that UR � URQ. In gen-
eral, UR is a valid assignment under hU;R;C; URQi. tu

Next, we prove that AFP hRC : lowerþ PREi is in P. In
the proof to AFP hRC : lowerþ PREi, we try to assign as
many roles to every user as possible, while the user-role
assignment is restricted by user-qualification relation and
PRE constraints. We then check whether the lower bound
requirements of all roles are satisfied or not.

Lemma 11. AFP hRC : lowerþ PREi is in P.

Proof. Given a configuration hU;R;C; URQi, we try to
assign as many roles to every user as possible. To do so,
for every user u, we first assign all the roles u is qualified
for u, and then revoke those assignments that violate
PRE constraints. We then check if the lower bound
requirement of any RC constraint is not met.

More specifically, let u1; . . . ; un be the set of users in
the configuration. For every user ui, we compute the
maximum set Ri of roles that can be assigned to ui. Ri is
constructed through the following steps:

Step 1: Add all the roles that ui is qualified for to Ri.
Step 2: For every role rj 2 Ri, if rj has a PRE constraint

PREðcondj; rjÞ, we check that if the current roles in Ri

satisfy condj (i.e., we assume that ui has been assigned all
roles currently in Ri and check if ui satisfies condj or not).
If Ri does not satisfy condj, we remove rj from Ri, and
then, repeat Step 2.

In the above, we construct Ri by first assigning all the
roles ui is qualified for, and then, repeatedly remove those
roles, whose prerequisite is not satisfied from Ri until no
more role is removed from Ri. In this case, Ri is the
maximum set of roles that can be assigned to ui. We then
construct a user-role assignment UR by assigning all the
roles inRi to ui for every i 2 ½1; n�. It is clear that any valid
user-role assignment (if any) must be a subset of UR.

Finally, we check that whether the lower bound
requirement of every role is satisfied and whether every
role is assigned to at least one user. If the answer is “no,”
the answer to the AFP instance is “no”; otherwise, the
answer to the AFP instance is “yes.” tu

5 THE ASSIGNMENT GENERATION PROBLEM

In Section 4, we have studied the AFP, which asks whether

a valid user-role assignment exists in a given configuration.

A natural question that arises is if valid assignments exist,

how can we find one? In this section, we study the AGP,

which returns a valid assignment for a given configuration.
First of all, AGP is at least as hard as AFP, because AGP

may return an answer if and only if a valid assignment

exists. Since the general case of AFP is intractable, AGP is

intractable as well. Also, it is not difficult to see that AGP is

in NP.

Theorem 12. AGP is NP-complete.

The fact that AGP is intractable means that there exist

difficult problem instances that take exponential time in the

worst case. Many instances that will be encountered in

practice may still be efficiently solvable. In Section 5.1, we

describe an algorithm for AGP.

5.1 An Algorithm for AGP

Our algorithm consists of three parts. First of all, we perform

preprocessing to reduce the size and complexity of the given

configuration hU;R;C; URQi. After this, we reduce the

problem (without mutual exclusion, role-cardinality, or

user-capacity constraints) to SAT. Finally, we specify

Pseudo-Boolean (PB) constraints to handle mutual exclu-

sion, role-cardinality, and user-capacity constraints.

5.1.1 Preprocessing

Given a configuration hU;R;C; URQi, we first go through

URQ to make sure that every role in R has at least one

qualified user. Also, we remove a user from U if he/she is

not qualified for any role.
Next, we try to reduce the size of URQ. We design a

polynomial-time algorithm that removes ðu; rÞ from URQ if

there is a prerequisite constraint PREðcond; rÞ and it is

impossible for u to satisfy cond. The algorithm, which is

given in Fig. 4, is very similar to the algorithm used in the

proof of AFPhRC : lowerþ PREi in Section 4. For every

user u, the algorithm in Fig. 4 computes the maximum set

Ru of roles that can be assigned to u, and then, removes

ðu; rÞ from URQ for any role r 62 Ru.
Finally, we try to reduce the number of constraints or

simplify them in the following way:

890 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2011

. For every mutual exclusion constraint MERðR0; kÞ, if
there is no user who is qualified for at least k roles in
R0, then we remove the constraint from C.

. For every role-cardinality constraint RCðr; cl; cuÞ, if
less than cl users are qualified for r, then it is
impossible to satisfy the constraint and we return
“no answer.” Otherwise, if no more than cu users are
qualified for r, we revise that constraint as RCðr; cl;
1Þ. Such a revision will simplify a PB constraint
specified in the third part of the algorithm.

. For every user-capacity constraint UCðu; cuÞ, if u is
qualified for no more than cu roles, then we remove
the constraint from C. Since u can only be assigned
to those roles she is qualified for, when u is qualified
for less than cu roles, the constraint UCðu; cuÞwill not
be violated by assignments that comply with URQ.

5.1.2 Reduction to SAT

An important observation is that AFP can be efficiently
reduced to SAT if we do not consider MER , RC, or UC
constraints (i.e., those constraints that have integer
parameters). By reducing the problem to SAT, we benefit
from several decades of research on the design of SAT
solvers. Problems in many fields, including databases,
planning, computer-aided design, machine vision, and
automated reasoning, have been reduced to SAT and
solved using SAT solvers. Oftentimes, this results in better
performance than using existing domain-specific algo-
rithms for those problems.

For every ðuj; riÞ 2 URQ, we specify a variable vj;i. That
is to say, we have jURQj variables in our SAT instance.
Variable vj;i being set to true indicates that ðuj; riÞ is in the
resulting user-role assignment (i.e., ri is assigned to uj).

. For every role ri without an explicit RC constraint:
we specify a clause � ¼

W
j2X vj;i, where X ¼

fj j ðuj; riÞ 2 URQg.
The clause states that ri is assigned to at least

one user.
. For every prerequisite constraint PREðcond; riÞ: such

a constraint essentially states that ri ! cond, which
can be equivalently written as :ri _ cond. For every
useruk such that ðuk; riÞ 2 URQ, we construct a clause
� ¼ :vk;i _ gðcond; kÞ, where the function g constructs

a clause from cond by replacing every role with a
variable: any role rj in cond is replaced with vk;j. For
example, gðr1 _ ðr2 ^ r3Þ; kÞ ¼ vk;1 _ ðvk;2 ^ vk;3Þ.

The clause � states that the role membership of
any user who is assigned to ri must satisfy the
precondition cond.

Note that certain SAT solvers require the input
expression be in CNF. In those cases, we will have
to revise � into CNF. Revising an expression into
CNF could lead to exponential growth in the size of
the expression. However, in practice, the precondi-
tion cond for a role is normally very simple. Thus,
the size expansion of clauses should not be
significant in practice.

In general, the resulted Boolean formula for the SAT
instance is a conjunction of all the clauses (denoted as �)
generated in the above.

5.1.3 Handling MER , RC, and UC Constraints

The reduction to SAT described above does not consider
MER , RC, or UC constraints. To handle these three types of
constraints, which contain integer parameters, we can use
Pseudo-Boolean constraints. In PB constraints, all variables
take values of either 0 (false) or 1 (true). Constraints are linear
inequalities with integer coefficients, for example, 2v1 þ v2 þ
v3 � 2 is a PB constraint. A disjunctive clause encountered in
SAT is a special case of PB constraints; for example, v1 _ v2 _
v3 is equivalent to v1 þ v2 þ v3 � 1. Many SAT solvers also
support PB constraints, SAT4J [15], for example.

Given a MER constraint MERðR0; kÞ, let uj be a user who
is qualified for at least k roles in R0. We specify a PB
constraint �ri2R0vj;i < k. Such a constraint ensures that uj is
assigned to less than k roles in R0.

Also, given a UC constraint UCðuj; cÞ, let Rj be the set of
roles uj is qualified for. We specify a PB constraint
�ri2Rj

vj;i � c. Such a constraint requires that no more than
c variables that are related to uj may be set to true, which
implies that uj is assigned to at most c roles. Similarly, given
an RC constraint RCðri; cl; cuÞ, let Ui be the set of users who
are qualified for ri. If cu is 1, we specify a PB constraint
�uj2Uivj;i � cl; otherwise, we specify two PB constraints,
�uj2Uivj;i � cl and �uj2Uivj;i � cu.

In general, if a truth assignment T is found for the SAT
instance with PB constraints, we construct a valid user-role
assignment UR for hU;R;C; URQi in the following way:

UR ¼ fðuj; riÞ j ðvj;i ¼ trueÞ 2 Tg:

Finally, we would like to point out that our algorithm
can be easily extended to support the cases where some
user-role assignments are fixed. In practice, some user-
role assignments may have been predetermined and what
we want to do is to find a valid assignment without
changing the predetermined assignments. To specify a
fixed assignment, say ri is assigned to uj, we just need to
add a clause vj;i to the SAT formula. Such a clause forces
setting vj;i to true in any truth assignment that satisfies
the formula.

6 DISCUSSION

In this section, we discuss a possible extension to the user-
role assignment problem. As we have mentioned in Section 3,

SUN ET AL.: ON THE COMPLEXITY OF AUTHORIZATION IN RBAC UNDER QUALIFICATION AND SECURITY CONSTRAINTS 891

Fig. 4. The algorithm to reduce the size of URQ used in the
preprocessing procedure in the algorithm for AGP. For every user u,
we compute the maximum set Ru of roles that can be assigned to u and
remove ðu; rÞ from URQ for any role r 62 Ru.

our current definition of the user-capacity constraint counts
every role in the configuration equally. However, in practice,
not every role has the same workload. To capture this, we
extend our definition to introduce an integer weight to each
role. A user-capacity constraint is still represented as
UCðu; cÞ; but now it requires that the sum of the weights of
the roles assigned to u must not exceed c. Our original
definition on the constraint, which counts the number of roles
assigned to a user, is a special case in which every role has
weight 1.

Next, we discuss how the extension may affect the results
presented in this paper. First of all, it is easy to see that the
modified user-capacity constraint can still be verified in
polynomial time, as we just need to compute the sum of
some integers and do a comparison. This implies that AVP is
still in P and the general case of AFP is still in NP, as a
nondeterministic Turing Machine can generate a user-role
assignment and verify it in polynomial time. The complex-
ities of those subcases not using user-capacity constraints
and those that are NP-hard in Fig. 2 remain unchanged.
However, AFPðRC : lowerþUCÞ is now NP-hard, which
implies that AFPðRCþUCÞ is NP-hard as well.

Lemma 13. AFPðRC : lowerþUCÞ is NP-hard with weighted
roles and the revised user-capacity constraints.

Proof. We can reduce the NP-complete SUBSET SUM

problem to AFPðRC : lowerþUCÞ. In SUBSET SUM, we
are given a set S ¼ fa1; . . . ; amg of integers and an integer
k, and we are asked whether there is a subset of integers
of S whose sum is k. Without loss of generality, we
assume that ai > 0 for every i 2 ½1;m�. We construct a
configuration hU;R;C; URQi as follows:

Let U ¼ fu1; u2g and R ¼ fr1; . . . ; rmg. In URQ, every
user is qualified for every role. Let wi be the weight of ri.
We have wi ¼ ai. Intuitively, ri 2 R corresponds to
ai 2 S. Let w ¼ �m

i¼1wi. We specify two user-capacity
constraints UCðu1; kÞ and UCðu2; w� kÞ.

Now, we prove that there is a valid assignment in
hU;R;C; URQi if and only if the answer to the SUBSET

SUM problem is “yes.” On the one hand, if there is a valid
assignment in hU;R;C; URQi, then there must exist two
sets of roles R1 and R2, which are assigned to u1 and u2,
respectively, and R1 [R2 ¼ R. Due to the user-capacity
constraints, �ri2R1

wi � k and �rj2R2
wj � w� k. Since

R1 [R2 ¼ R, we have �ri2R1
wi þ �rj2R2

wj ¼ w. Therefore,
�ri2R1

wi ¼ k, which implies that �ri2R1
ai ¼ k as wi ¼ ai.

On the other hand, assume that there exists S1 � S
such that the sum of the integers in S1 is equivalent to k.
Without loss of generality, assume that S1 ¼ fa1; . . . ; atg.
We construct an assignment UR by assigning fr1; . . . ; rtg
to u1 and R� fr1; . . . ; rtg to u2. In this case, the sum of
the weight of the roles assigned to u1 is k, while that of
the roles assigned to u2 is w� k. Therefore, both of
the user-capacity constraints are satisfied and UR is a
valid assignment. tu

Finally, we point out that our algorithm for AGP
described in Section 5.1 can be easily modified to support
the weighted roles and the revised user-capacity constraints.
All we need to do is to modify the Pseudorandom constraints
that are used to enforce user-capacity constraints. More

specifically, we revise the constraint �ri2Rk
vk;i � c into

�ri2Rk
wivk;i � c, where wi is the weight of ri.

7 RELATED WORK

This paper studies user-role assignment with qualification

and security constraints. Constraint specification and
enforcement is a well-studied topic. There exists a wealth
of literature [1], [2], [7], [9], [11], [12], [18], [19] on
constraints in the context of RBAC. Some proposed and
classified new kinds of constraints [9], [18]; some proposed

new languages for specifying sophisticated constraints [1],
[2], [7], [12], [19]; and other studied whether these
constraints comply with higher level policy objectives [5],
[13]. Most of these constraints are motivated by SoD and are

variants of role mutual exclusion constraints, which may
declare two roles to be mutually exclusive so that no user
can be a member of both roles. However, the existing works
do not consider how to assign users to roles so as to satisfy
all the security constraints in a system at the same time.

Our role assignment problem is similar to the problem of
assigning users to perform different steps in a workflow,
while satisfying a number of constraints, which has been
studied in [4], [8], [20]. Intuitively, one can map each role in
our setting to one step in a workflow, and the problem of

assigning users to roles becomes the same as assigning users
to steps. The user-role qualification relation in our setting
corresponds to the user-step authorization relation. Role
mutual exclusion constraints correspond to mutual exclu-

sion constraints among steps in a workflow. However, our
work has two main differences. First, we consider different
kinds of constraints because of our different motivation. We
have role-cardinality and user-capacity constraints, which
have not been studied in the workflow literature. The nature

of workflow is that each step is performed by a single user,
thus role-cardinality constraints seem pointless in a work-
flow setting. However, user-capacity constraints might be
fruitfully added to workflow. On the other hand, the one-

user-per-step nature of workflow enables one to consider
more sophisticated constraints such as the two users
performing the first and the last step must not be in conflict
of interest with each other. Second, we introduce new
techniques to solve the assignment generation. For the

tractable special cases of the assignment generation problem,
we reduce the problem to the Maximum Flow problem. For
the general case, we reduce it to SAT with Boolean and
Pseudo-Boolean constraints. These techniques may be
applicable in the workflow settings as well.

Our user-role assignment problem emphasizes that all
roles must be assigned to qualified users so that the tasks
represented by them can be performed. This has a similar
spirit as resiliency policies [14]. A resiliency policy requires
that even if a certain number of users are absent, the

remaining users must still have enough permissions to
complete a certain task. However, [14] only studies whether
an existing access control is resilient or not and does not
study how to assign users to permission to satisfy resiliency

requirements. They did not consider user qualification in
the resiliency policies either.

892 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2011

8 CONCLUSION AND FUTURE WORK

In this paper, we have studied the user-role assignment
problem with consideration of user-role qualification rela-
tion and a variety of role-based and user-based constraints.
We have studied the consistency problem among three
types of role-based constraints, and studied computational
problems related to user-role assignment, such as the AVP
and the AFP. Furthermore, we have proposed an algorithm
to find a valid user-role assignment for a given configura-
tion. Our algorithm takes advantages of the existence of fast
SAT solvers that support Pseudo-Boolean constraints.

Open problems. A future direction is to introduce
optimization goals into the user-role assignment problem.
An interesting optimization objective is to minimize the
number of users. That is, given a configuration, what is the
smallest number of users in a valid assignment? Such a
problem may help us to find out redundant users and
improve the utilization of human resources.

Another future work also relates to human resource
management. Assume that there is no valid assignment for a
given configuration, which indicates that we may either
change the configuration or hire more people (i.e., introduce
more users into the system). If we would like to add users
into the configuration, what kinds of users are needed? What
is the minimum cost of adding new users so that a valid
assignment exists for the new configuration (assuming that
users with different qualification have different costs)?

Finally, in this paper, we assumed that authorization
constraints are given. It will be useful to study how to
efficiently generate constraints to enforce access control
policies. The problem is particularly challenging when we
have multiple policies at the same time in the system, and
those policies may be of different types (e.g., some of them are
separation of duty policies and some are resiliency policies).

APPENDIX A

PROOF OF THEOREM 1

In this Appendix, we prove the intractable subcases in
Theorem 1. We just need to show that CCP hRCþ PREi;
CCP hRC : lowerþ PREþMER : 2i, and CCP hRCþ PRE :
conjþMER : 2i are NP-hard. Other intractability results
can be implied from the three cases.

Lemma 14. CCP hRCþ PREi is NP-hard. In other words,
CCP is NP-hard, if no MER constraint is used and all other
constraints may take general forms.

Proof. We reduce the NP-complete Set Covering

problem to CCP. In the Set Covering problem, given
a set S ¼ fe1; . . . ; emg, a family F ¼ fS1; . . . ; Sng of S’s
subsets, and an integer k, we are asked whether there
exist k elements (which are sets) in F , whose union is S.

Given an instance of the Set Covering problem, we
construct such a CCP instance: We create m roles,
a1; . . . ; am, and another n roles, b1; . . . ; bn. For each
i 2 ½1; n�, we specify a constraint RCðbi; 1; 1Þ, which
requires that bi must be assigned to exactly one user.
Also, we create two other roles x and y, with constraints
RCðx; 1; kÞ and RCðy; n; nÞ. In other words, role x can be
assigned to at most k users and role y must be assigned

to exactly n users. Also, we specify a constraint
PREðb1 _ � � � _ bn; yÞ. Since bi can be assigned to only
one user and y must be assigned to n users due to the RC
constraints, the PRE constraint PREðb1 _ � � � _ bn; yÞ
together with the RC constraints ensures that bi and bj,
where i 6¼ j, must be assigned to different users. Finally,
for every i 2 ½1;m�, let fSdi;1 ; . . . ; Sdi;tg be the set of
elements in F such that ei 2 Sdi;jðj 2 ½1; t�Þ; we specify a
constraint PREððbdi;1 _ � � � _ bdi;tÞ ^ x; aiÞ.

Next, we prove that the answer to the Set Covering
instance is “yes” if and only if the answer to the CCP
instance is “yes.”

On the one hand, without loss of generality, assume that
the union of S1; . . . ; Sk is S. We can construct a user-role
assignmentUR in such a way: we create n users u1; . . . ; un.
For every i 2 ½1; n�, we assign roles bi and y to ui. This
satisfies the constraints RCðbi; 1; 1Þ, RCðy; n; nÞ, and
PREðb1 _ � � � _ bn; yÞ. We also assign role x to the k users
u1; . . . ; uk. Finally, we assign role ai to user uj if and only if
ei 2 Sj and j � k; this satisfies PREððbdi;1 _ � � � _ bdi;tÞ ^
x; aiÞ, since uj has been assigned to x when j � k. By
assumption, for every i 2 ½1;m�, we have ei 2 ðS1 _ � � � _
SkÞ. Hence, for every i 2 ½1;m�; ai has been assigned to at
least one user in fu1; . . . ; ukg. In general, every role has
been assigned to at least one user and no constraint is
violated. The answer to the CCP instance is “yes.”

On the other hand, assume that we have a user-role
assignment UR that is valid with respect to the CCP
instance. Due to the constraint RCð1; k; xÞ; x can be
assigned to no more than k users. Without loss of
generality, assume that x is assigned to u1; . . . ; uk. In this
case, roles in fa1; . . . ; amg can only be assigned to these
k users. Also, in order for ujðj � kÞ to be a member of ai
without violating the constraint PREððbdi;1 _ � � � _ bdi;tÞ ^
x; aiÞ; uj must be assigned to a role in fb1; . . . ; bng. As
stated during the construction of the CCP instance, a
user can be assigned to at most one role in fb1; . . . ; bng.
Without loss of generality, assume that ujðj � kÞ is
assigned to bcj , where cj 2 ½1; n�. Now, we prove that the
union of Sc1

; . . . ; Sck is S. For every i 2 ½1;m�; ai is
assigned to at least one user in UR. And we have argued
that ai can only be assigned to users in fu1; . . . ; ukg.
Without loss of generality, assume that ai is assigned to
u1. In this case, in order to satisfy that constraint
PREððbdi;1 _ � � � _ bdi;tÞ ^ x; aiÞ; bc1

must be in the prerequi-
site condition of ai, since u1 is a member of bc1

but no
other roles in fb1; . . . ; bng. According to the construction
of the CCP instance, we must have ei 2 Sc1

. Therefore,
the union of Sc1

; . . . ; Sck is S. The answer to the set
covering instance is “yes.” tu

Lemma 15. CCP hRC : lowerþ PREþMER : 2i is NP-hard.

In other words, CCP is NP-hard, if all RC constraints only

have lower bound requirements, all the MER constraints have

k ¼ 2, and PRE constraints may take general form.

Proof. We reduce the NP-complete Graph K-Coloring

problem to CCP. In the Graph K-Coloring problem,

given a graphG and a number k, we are asked whether we

can assign one of the k colors to every node inG, such that

no pair of adjacent nodes are assigned the same color.
Given a graph G and a number k, we construct such a

CCP instance: Assume that there are m nodes in G. For

SUN ET AL.: ON THE COMPLEXITY OF AUTHORIZATION IN RBAC UNDER QUALIFICATION AND SECURITY CONSTRAINTS 893

every node ni in G, we create k roles ri;1; . . . ; ri;k. For
every pair of adjacent nodes ðni; njÞ, we specify k MER
constraints MERðfri;1; rj;1gÞ; . . . ;MERðfri;k; rj;kgÞ. We
then create a role x along with a PRE constraint
PREðF1 ^ � � � ^ Fm; xÞ, where Fi ¼ ri;1 _ � � � _ ri;k.

Next, we prove that G can be colored with k colors
validly if and only if the answer to the CCP instance if
“yes.”

On the one hand, assume that G can be colored with
k colors validly. We can construct a user-role assignment
UR in such a way based on a valid coloring of G: Create a
user ux and assign role x to her. No other user will be
assigned to x. Also, for every node ni in G, if ni is
assigned the jth color, we assign ri;j to ux. In this case,
every Fjðj 2 ½1;m�Þ is satisfied, and thus, PREðF1 ^ � � � ^
Fm; xÞ is satisfied. Since G is colored validly, no pair of
adjacent nodes ðni; njÞ is assigned to the same color,
which indicates that no MER constraint is violated by the
role assignments for ux. For every role that is not
assigned to ux, we create a fresh user and assign the role
to her. All such users have only one role and thus they do
not violate any MER constraints. In this case, the user-
role assignment UR meets all requirements, and thus, the
answer to the CCP instance is “yes.”

On the other hand, assume that the answer to the CCP
instance is “yes”. There must exist a user-role assignment
UR that meets the requirements in the CCP instance. We
can color G in such a way: Let ux be the user, who is
assigned role x. For every i 2 ½1;m�; ux must be assigned
to at least one role in fri;1; . . . ; ri;kg due to the PRE
constraint of x. For every node ni in G, if ux is assigned to
ri;j, then we assign the jth color to ni (if ni has not been
colored yet). In this way, since the role assignment for ux
does not violate any MER constraints, no pair of adjacent
nodes in G are given the same color. Therefore, we have
colored G validly.

In general, G can be colored with k colors validly if
and only if the answer to the CCP instance if “yes.” The
lemma holds. tu

Lemma 16. CCP hRCþ PRE : conjþMER : 2i is NP-hard.
In other words, CCP is NP-hard, if all PRE constraints only
use conjunction in their conditions, all the MER constraints
have k ¼ 2, and RC constraints may take general form.

Proof. We reduce the NP-complete Graph K-Coloring

problem to CCP. In the Graph K-Coloring problem,
given a graphG and a number k, we are asked whether we
can assign one of the k colors to every node inG, such that
no pair of adjacent nodes are assigned the same color.

Given a graph G and an integer k, we construct such a
CCP instance: Assume that there are m nodes in G. We
create a role x with a constraint RCðx; 1; kÞ. For every
node niði 2 ½1;m�Þ, we create a role ri with a constraint
PREðx; riÞ. For every pair of adjacent nodes ðni; njÞ in G,
we create a constraint MERðfni; njg; 2Þ.

Next, we prove that G can be colored with k colors
validly if and only if the answer to the CCP instance if
“yes.”

On the one hand, assume that G can be colored with
k colors validly. We can construct a user-role assignment
UR in such a way based on a valid coloring of G: We
create k users u1; . . . ; uk, and assign role x to these

k users. This does not violate the constraint RCðx; 1; kÞ.
For every node niði 2 ½1;m�Þ, if ni is assigned the
jth color, where j 2 ½1; k�, we assign the role ri to uj.
Since uj is a member of x, the constraint PREðx; riÞ is
satisfied. Also, since the coloring is valid, no pair of
adjacent nodes are assigned the same color. This
indicates that no pair of mutually exclusive roles are
assigned to the same user. Hence, no MER constraint is
violated. In this case, the user-role assignment UR meets
all requirements, and thus, the answer to the CCP
instance is “yes.”

On the other hand, assume that the answer to the CCP
instance is “yes.” There must exist a user-role assignment
UR that meets the requirements in the CCP instance. We
can color G in such a way: Without loss of generality,
assume that x is assigned to u1; . . . ; uk. For every role
riði 2 ½1;m�Þ; ri must be assigned to users in fu1; . . . ; ukg
due to the constraint PREðx; riÞ. Let ujðj 2 ½1; k�Þ be a
member of ri. We assign the jth color to ni (if ni has not
been colored yet). All the MER constraints being satisfied
indicates that no pair of mutually exclusive roles are
assigned to the same user. Hence, no pair of adjacent
nodes in G are assigned to the same color.

In general, G can be colored with k colors validly if
and only if the answer to the CCP instance if “yes.” The
lemma holds. tu

APPENDIX B

PROOF OF THEOREM 8

In this Appendix, we prove the intractable subcases
in Theorem 8. We just need to show that AFP hRC :
lowþUCþ PRE : conji;AFP hRC : lowerþMER : 2i, and
AFP hRCþ PRE : conji are NP-hard. Other intractability
results can be implied from the three cases.

Lemma 17. AFP hRC : lowþUCþ PRE : conji is NP-hard.

Proof. We reduce the NP-complete BIN PACKING problem
to AFP hRC : lowþUCþ PRE : conji. In BIN PACKING,
given a set of integersS ¼ fa1; . . . ; ang, an integer k, and an
integer c, we are asked if we can place all the integers into
k bins such that the sum of the integers in each bin is no
larger than c. BIN PACKING remains NP-complete even
if the integers in S are represented in unary. In this proof,
we assume that the integers in S are represented in unary.

Given a BIN PACKING instance, we construct an AFP
instance as follows: For every ai 2 S, we construct ai
roles ri;1; . . . ; ri;ai . If ai > 1, we construct a PRE constraint
PREðri;1 ^ � � � ^ ri;ai�1; raiÞ. Also, we construct k users,
and every user is qualified to be assigned to every role.
Each user can be assigned to at most c roles.

Next, we show that the answer to the BIN PACKING

instance is “yes” if and only if the answer to the AFP
instance is “yes.”

On the one hand, assume that all the integers in S
have been placed into k bins and the sum of integers in
each bin is no larger than c. For every bin Biði 2 ½1; k�Þ,
for every j 2 ½1; n�, if aj has been placed in Bi, we assign
roles rj;1; . . . ; rj;aj to user ui. This does not violate the PRE
constraint PREðrj;1 ^ � � � ^ rj;aj�1; rajÞ. And since the sum
of the integers in Bi is no larger than c; ui is assigned
to no more than c roles, which satisfies the capacity

894 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2011

constraint of ui. Also, since every aj 2 S has been placed
in a certain bin, all the roles are assigned to a certain user.
In this case, we have constructed a valid user-role
assignment and the answer to the AFP instance is “yes.”

On the other hand, assume that there is a valid user-role
assignment for the AFP instance. We now place the
integers inS to bins based on the user-role assignment. For
every i 2 ½1; k�, for every j 2 ½1; n�, if raj is assigned to ui,
we place integer aj into the ith bin Bi. Since every rajðj 2
½1; n�Þ has been assigned to at least one user, we have
placed all the integers in S to the bins. Now, we show that
there is no bin, whose sum of integers is greater than c. Due
to the constraint PREðrj;1 ^ . . . ^ rj;aj�1; rajÞ, the fact that
raj is assigned to ui indicates that all the aj roles in
frj;1; . . . ; rj;ajg must have been assigned to ui as well. In
this case, it is easy to see that the sum of integers inBi is no
larger than the number of roles assigned to ui. Since ui can
be assigned to at most c roles, the sum of integers in Bi is
no larger than c. Therefore, the answer to the BIN

PACKING instance is “yes.” tu
Lemma 18. AFP hRC : lowerþMER : 2i is NP-hard.

Proof. The intractability of AFPhRC : lower;MERi can be

implied by the NP-completeness of the Workflow

Satisfiability Problem proved in [20]. Please refer to

Section 7 for detailed discussion. In below, we give our

proof of the NP-hardness of AFPhRC : lower;MERi,
which employs a different reduction from the one used

in [20].
We reduce the NP-complete SAT problem to

AFPhRC : lower;MERi. In SAT, we are given an expres-
sion � in conjunctive normal form (CNF) and are asked
whether there exists a truth assignment for variables
appeared in � such that � is evaluated to true.

Let � ¼ �1 ^ � � � ^ �m, where �i ¼ li1 _ � � � _ lit is a
clause and lij is a literal (i.e., a variable or the negation
of a variable). Without loss of generality, assume that no
clause contains both v and :v. Let fv1; . . . ; vng be the set
of variables appeared in �. We construct a configuration
hU;R;C; URQi as follows:

Let U ¼ fu0; u1; . . . ; ung and R ¼ Ra [Rb, where Ra ¼
fa1;0; a1;1; . . . ; an;0; an;1g and Rb ¼ fb1; . . . ; bmg. Intuitively,
uiði 2 ½1; n�Þ corresponds to variable vi in the SAT instance;
ai;0 and ai;1 correspond to setting variable vi to false and
true, respectively; and bj corresponds to clause �j in the
SAT instance. Next, we construct URQ in such a way that:
1) u0 is qualified for every role in Ra; 2) uiði 2 ½1; n�Þ is
qualified for ai;0 and ai;1 but not any other role in Ra; and
3) uiði 2 ½1; n�Þ is qualified for bj if and only if variable vi or
its negation appears in the clause �j. Finally, for every
i 2 ½1; n�, we specify a mutual exclusion constraint
MERðai;0; ai;1Þ, which indicates that variable vi cannot be
set to both false and true. Also, we specify a constraint
MERðai;0; bjÞ if and and only if vi appears in �j; we specify
a constraint MERðai;1; bjÞ if and only if :vi appears in �j.

Now, we prove that � is satisfiable if and only if there
exists a valid assignment in hU;R;C; URQi. On the one
hand, assume that T is a truth assignment that satisfies �.
We now construct a valid assignment for hU;R;C; URQi.
For every i 2 ½1; n�, if vi is true, we assign ai;1 to ui and ai;0
to u0; otherwise, if vi is false, we assign ai;0 to ui and ai;1 to
u0. Also, if ai;1 (respectively, ai;0) is assigned to ui, then bj

is assigned to ui if and only if �j contains vi (respectively,
:vi); that is to say, bj is assigned to ui if and only if
setting vi to true (respectively, false) satisfies the clause
�j. Since every �jðj 2 ½1;m�Þ is satisfied by T , every role
rj 2 Rb is assigned to at least one user. Also, every role in
Ra is assigned to one user, and no mutual exclusion
constraint is violated in our assignment. Therefore, the
assignment is valid.

On the other hand, assume that there exists a valid
assignment under hU;R;C; URQi. For every i 2 ½1; n�; ui
and u0 are qualified for ai;0 and ai;1. Since ai;0 and ai;1 are
mutually exclusive, one of them is assigned to ui and the
other is assigned to u0. We construct a true assignment by
setting variable vi to false if and only if ai;0 is assigned to
ui; otherwise, we set vi to true. Now, we prove that every
clause in � is satisfied by the truth assignment. Assume
that bi is assigned to uj. Since uj is qualified for bi,
according to our construction, either vj or :vj appears in
�i. Without loss of generality, assume that vj appears in
�i. In this case, according to our construction, bi and aj;0
are mutually exclusive. Hence, uj must have been
assigned to aj;1, which indicates that vj is set to true,
and �i is satisfied. This indicates that every clause in � is
satisfied, and thus, � is satisfied. tu

Lemma 19. AFP hRCþ PRE : conji is NP-hard.

Proof. We reduce the NP-complete SET COVERING

problem to AFPhRCþ PREi. In the SET COVERING

problem, we are given a set S ¼ fe1; . . . ; emg, a family

of sets F ¼ fS1; . . . ; Sng, where Si 	 S, and an integer k.

We are asked whether there exists k elements in F ,

whose union is equivalent to S.
Given a SET COVERING instance, we construct such a

configuration hU;R;C; URQi: let U ¼ fu1; . . . ; ung and
R ¼ fr0; r1; . . . ; rmg. In URQ, every user in U is qualified
for r0; user ui is qualified for rj if and only if ej 2 Si.
Intuitively, ui 2 U corresponds to Si 2 F , and rj 2 R
corresponds to ej 2 S. For every j 2 ½1;m�, we specify a
prerequisite constraint PREðr0; rjÞ (i.e., a member of rj
must be a member of r0). Finally, we specify a role-
cardinality constraint RCðr0; 1; kÞ.

Now, we prove that the answer to the SET COVERING

instance is “yes” if and only if there exists a valid
assignment under hU;R;C; URQi. On the one hand,
without loss of generality, assume that the union of
S1; . . . ; Sk is S. We now create a valid assignment for
hU;R;C; URQi. We assign r0 to u1; . . . ; uk, and for every
i 2 ½1; k�, we assign toui all the roles she is qualified for. For
every i 2 ½1;m�, since ei 2 ðS1 [� � � [Sk ¼ SÞ, according to
our construction, ri is assigned to at least one user in
fu1; . . . ; ukg. Because r0 is assigned to k users, constraint
RCðr0; 1; kÞ is satisfied. Also, since we assign roles only to
u1; . . . ; uk and all of them are assigned to r0, no prerequisite
constraint is violated. Therefore, the assignment is valid.

On the other hand, assume that there is a valid
assignment under hU;R;C; URQi. According to the
cardinality constraint, r0 is assigned to at most k users.
Without loss of generality, assume that r0 is assigned to
u1; . . . ; uk in a valid assignment. Since the assignment is
valid, for every i 2 ½1;m�; ri is assigned to at least one
user. Assume that ri is assigned to uj. According to the

SUN ET AL.: ON THE COMPLEXITY OF AUTHORIZATION IN RBAC UNDER QUALIFICATION AND SECURITY CONSTRAINTS 895

prerequisite constraint PREðr0; riÞ; uj must be assigned to
r0 as well, which indicates that j 2 ½1; k�. In our construc-
tion, ri corresponds to ei and uj corresponds to Sj.
Therefore, for every i 2 ½1; m�; ei 2 ðS1 [� � � [SkÞ. Hence,
S1 [� � � [Sk ¼ S and the answer to the SET COVERING

instance is “yes.” tu

ACKNOWLEDGMENTS

The first author’s research was supported in part by the

National High Technology Research and Development

Program (863 Program) of China (2006AA01A113) and the

Science Foundation of Shandong Province (Y2008G28).

Portions of this work were also supported by the US

National Science Foundation (NSF) grant 0712846 IPS:

Security Services for Healthcare Applications, the MURI

award FA9550-08-1-0265 from the Air Force Office of

Scientific Research, the NSF Grants CNS-0915436, CNS-

0913875, and Science and Technology Center CCF-0939370,

by Grant FA9550-09-1-0223 from the Air Force Office of

Scientific Research, and by sponsors of the Center for

Education and Research in Information Assurance and

Security (CERIAS). Part of first and second author’s work

was done while visiting Purdue University.

REFERENCES

[1] G.-J. Ahn and R.S. Sandhu, “The RSL99 Language for Role-Based
Separation of Duty Constraints,” Proc. Fourth Workshop Role-Based
Access Control, pp. 43-54, 1999.

[2] G.-J. Ahn and R.S. Sandhu, “Role-Based Authorization Con-
straints Specification,” ACM Trans. Information and System Security,
vol. 3, no. 4, pp. 207-226, Nov. 2000.

[3] ANSI, American National Standard for Information Technology—Role
Based Access Control, p. 359, ANSI Int’l Committee for Information
Technology Standards, Feb. 2004.

[4] E. Bertino, E. Ferrari, and V. Atluri, “The Specification and
Enforcement of Authorization Constraints in Workflow Manage-
ment Systems,” ACM Trans. Information and System Security, vol. 2,
no. 1, pp. 65-104, Feb. 1999.

[5] H. Chen and N. Li, “Constraint Generation for Separation of
Duty,” Proc. Ninth ACM Symp. Access Control Models and
Technologies (SACMAT), pp. 130-138, June 2006.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2002.

[7] J. Crampton, “Specifying and Enforcing Constraints in Role-Based
Access Control,” Proc. ACM Symp. Access Control Models and
Technologies (SACMAT), pp. 43-50, June 2003.

[8] J. Crampton, “A Reference Monitor for Workflow Systems with
Constrained Task Execution,” Proc. ACM Symp. Access Control
Models and Technologies (SACMAT), pp. 38-47, June 2005.

[9] V.D. Gligor, S.I. Gavrila, and D.F. Ferraiolo, “On the Formal
Definition of Separation-of-Duty Policies and Their Composi-
tion,” Proc. IEEE Symp. Research in Security and Privacy, pp. 172-
183, May 1998.

[10] IBM Tivoli Identity Manager 5.1. http://publib.boulder.ibm.com/
infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itim.doc/
cpt/cpt_ic_release_oview_whatsnew.html, 2009.

[11] T. Jaeger, “On the Increasing Importance of Constraints,” Proc.
ACM Workshop Role-Based Access Control (RBAC), pp. 33-42,
1999.

[12] T. Jaeger and J.E. Tidswell, “Practical Safety in Flexible Access
Control Models,” ACM Trans. Information and System Security,
vol. 4, no. 2, pp. 158-190, May 2001.

[13] N. Li, M.V. Tripunitara, and Z. Bizri, “On Mutually Exclusive
Roles and Separation of Duty,” ACM Trans. Information and System
Security, vol. 10, no. 2, May 2007.

[14] N. Li, M.V. Tripunitara, and Q. Wang, “Resiliency Policies in
Access Control,” Proc. ACM Conf. Computer and Comm. Security
(CCS), Nov. 2006.

[15] D.L.B. (Project Leader) “Sat4j: A Satisfiability Library for Java,”
URL http://www.sat4j.org/, Jan. 2006.

[16] R.S. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
Model for Role-Based Aministration of Roles,” ACM Trans.
Information and Systems Security, vol. 2, no. 1, pp. 105-135, Feb.
1999.

[17] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, “Role-
Based Access Control Models,” Computer, vol. 29, no. 2, pp. 38-47,
Feb. 1996.

[18] T.T. Simon and M.E. Zurko, “Separation of Duty in Role-Based
Environments,” Proc. 10th Computer Security Foundations Workshop,
pp. 183-194, June 1997.

[19] J. Tidswell and T. Jaeger, “An Access Control Model for
Simplifying Constraint Expression,” Proc. ACM Conf. Computer
and Comm. Security, pp. 154-163, 2000.

[20] Q. Wang and N. Li, “Satisfiability and Resiliency in Workflow
Systems,” Proc. European Symp. Research in Computer Security
(ESORICS), Sept. 2007.

Yuqing Sun received the BSc, Master’s, and
PhD degrees in computer science from Shan-
dong University, China. She is currently a
professor in the School of Computer Science
and Technology, Shandong University. She was
a visiting scholar at Hong Kong University and at
Purdue University. Her research interests in-
clude access control, security policy, privacy
protection, social network, web services, and
workflow management. She has published more

than 30 papers in refereed journals and in international conferences and
symposia proceedings. She has also served as a reviewer for
international journals and served on the program committees of many
international conferences.

Qihua Wang received the BS degree in
computer science from the University of
Science and Technology of China, Hefei, in
2004, and the MS and PhD degrees in
computer science from Purdue University, in
2007 and 2009, respectively. He joined the IBM
Almaden Research Center in 2009. His re-
search interests include information security,
knowledge management, and social computing.
He has published more than 20 technical

papers in refereed journals and conference proceedings and served
on the program committees of several international conferences. He
was the recipient of the Diamond Award for Academic Excellence from
the Center for Education and Research in Information Assurance and
Security (CERIAS).

Ninghui Li received the BEng degree in
computer science from the University of Science
and Technology of China, Hefei, in 1993, and
the MSc and PhD degrees in computer science
from New York University, in 1998 and 2000,
respectively. He is currently an associate
professor in computer science at Purdue Uni-
versity. Prior to joining Purdue University in
2003, he was a research associate at the
Computer Science Department, Stanford Uni-

versity. His research interests include security and privacy in informa-
tion systems, with a focus on access control. He has worked on projects
on trust management, automated trust negotiation, role-based access
control, privacy-preserving data publishing, and operating system
access control. He has published more than 90 technical papers in
refereed journals and conference proceedings and has served on the
program committees of more than four dozen international conferences
and workshops. He is a senior member of the IEEE and a member of
the ACM.

896 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2011

Elisa Bertino is currently a professor of
computer science at Purdue University, and
serves as research director of the Center for
Education and Research in Information Assur-
ance and Security (CERIAS). Previously she
was a faculty member at the Department of
Computer Science and Communication, Univer-
sity of Milan, where she was the department
head and director of the DB&SEC laboratory.
She has been a visiting researcher at the IBM

Research Laboratory (now Almaden), San Jose, at Microelectronics and
Computer Technology Corporation, at Rutgers University, and at
Telcordia Technologies. Her research interests include security, privacy,
digital identity management systems, database systems, distributed
systems, and multimedia systems. In these areas, she has published
more than 400 papers in all major refereed journals, and in proceedings
of international conferences and symposia. She is a coauthor of the
books Object-Oriented Database Systems—Concepts and Architec-
tures (Addison-Wesley International Publ., 1993), Indexing Techniques
for Advanced Database Systems (Kluwer Academic Publishers, 1997),
Intelligent Database Systems (Addison-Wesley International Publ.,
2001), and Security for Web Services and Service Oriented Architec-
tures (Springer, 2009). She has been a coeditor-in-chief of the Very
Large Database Systems (VLDB) Journal from 2001 to 2007. She
serves, or has served, on the editorial boards of several scientific
journals, including IEEE Internet Computing, IEEE Security and Privacy,
the IEEE Transactions on Knowledge and Data Engineering, ACM
Transactions on Information and System Security, ACM Transactions on
Web, Acta Informatics, and the Parallel and Distributed Database
Journal. She is a fellow of the IEEE and the ACM and has been been
named a golden core member for her service to the IEEE Computer
Society. She was the recipient of the 2002 IEEE Computer Society
Technical Achievement Award for outstanding contributions to database
systems and database security and advanced data management
systems and the 2005 IEEE Computer Society Tsutomu Kanai Award
for pioneering and innovative research contributions to secure dis-
tributed systems. She is currently serving on the Board of Governors for
the IEEE Computer Science Society.

Mikhail (Mike) J. Atallah received the PhD
degree from The Johns Hopkins University in
1982. He joined the Computer Sciences Depart-
ment, Purdue University, where he currently
holds the rank of distinguished professor of
computer science. He is a fellow of the IEEE and
the ACM. He has served on the editorial boards
of top journals, and on the program committees
of top conferences and workshops. He was
keynote and invited speaker at many national

and international meetings, and a speaker nine times in the Distin-
guished Colloquium Series of top Computer Science Departments. He
was selected in 1999 as one of the best teachers in the history of Purdue
University and included in Purdue’s Book of Great Teachers, a
permanent wall display of Purdue’s best teachers past and present.
He is a cofounder of Arxan Technologies Inc.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SUN ET AL.: ON THE COMPLEXITY OF AUTHORIZATION IN RBAC UNDER QUALIFICATION AND SECURITY CONSTRAINTS 897

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

