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Abstract. There are a large number of scientific papers published each
year. Since the progresses on scientific theories and technologies are quite
different, it is challenging to recommend valuable new papers to the
interested researchers. In this paper, we investigate the new paper rec-
ommendation task from the point of involved topics and use the concept
of subspace to distinguish the academic contributions. We model the
papers as topic distributions over subspaces through the neural topic
model. The academic influences between papers are modeled as the topic
propagation, which are learned by the asymmetric graph convolution
on the academic network, reflecting the asymmetry of academic knowl-
edge propagation. The experimental results on real datasets show that
our model is better than the baselines on new paper recommendation.
Specially, the introduced subspace concept can help find the differences
between high quality papers and others, which are related to their inno-
vations. Besides, we conduct the experiments from multiple aspects to
verify the robustness of our model.
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1 Introduction

Currently, there are a large number of academic papers published every year.
It’s necessary to recommend researchers the valuable and interested papers. The
number of citations is often regarded as an important indicator for the quality
of papers. To describe the detailed contribution of a paper, a citation type can
be further classified into three categories, Background, Method and Result. As
an example, we show the papers concerning the technology Transformer [6],
GPT [5], BERT [4], GPT2 [3] and BART [2] in Fig. 1, which are labeled by
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Fig. 1. An example of different citation types.

Semantic Scholar1. Arrows point to the citing papers, representing the direction
of knowledge propagation. These points help the users more precisely find their
interested topics, such as the inspiring theory, the technical methods, or the
dataset and etc.

To recommend new paper, the existing methods typically leverage the aca-
demic network (AN for short) to model user interests and paper features [1,13].
However, they didn’t consider the differentiable details on citations. Since the
innovations in papers are various, the concept of subspace was used in this paper
to describe the paper contents [21]. Besides, the citation-based recommendation
methods are not applicable to new paper recommendation since it didn’t have
citation relationship.

To tackle the above challenges, we propose the differentiable topics based
new paper recommendation model (DTNRec for short). Paper contents are clas-
sified into three subspaces according to the innovation forms as the usual way
[21]: Background, Method and Result. We adopt the neural topic model (NTM
for short) to get the topic distribution over subspaces as the paper embeddings,
which are used to differentiate the innovation forms of paper. Considering the
citations reflect the influence of cited papers and the author interests of citing
paper, we adopt the asymmetric academic network to model this kind of knowl-
edge propagation. The graph convolution network (GCN for short) operations
are performed on this network to learn the user interests and paper influences,
separately. For example, for the central paper p, its references are the neigh-
bors during convolution to compute the interests for the authors of p, while its
citations are used to compute its influences on the network. Then a new paper
is recommended to the potentially interested users based on the paper content.
Our contributions are as follows:

1. We label the paper content with subspace tags, then adopt the NTM to get
the topic distribution over subspaces as paper embeddings.

2. We create the asymmetric academic network to model the academic propa-
gation, where the directed edge points to the citing paper denoting the prop-
agation. Based on this network and paper embeddings, we adopt the GCN
operations to compute user interests and paper influences in a fine-grained
way.

1 https://www.semanticscholar.org/.

https://www.semanticscholar.org/
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3. We conducted the experiments from multiple aspects to verify the effective-
ness and robustness of our model.

2 Related Work

Collaborative filtering (CF for short) is a commonly used technique in recom-
mendation systems. NeuMF [12] and BUIR [10] are both CF-based methods
using user-item interaction data to get user and item representations. He et al.
[11] proposed LightGCN to learn the user and item embeddings with neighbor-
hood aggregation operation. Wang et al. [9] proposed alignment and uniformity
as two properties that are important to CF-based methods, and optimized the
two properties to get user and item representations. However, these methods
only use interaction data of user and items, without considering other features.

The academic network consists of papers, authors, other related attributes
and the relationships among them, which is important for paper recommendation
task since it’s rich in information. Existing works often used AN-based methods
including KGCN [18], KGCN-LS [19], RippleNet [20], etc. to mine high-order
information on the academic network, among which GCN is a widely used tech-
nique. However, these methods have cold-start problem and are not suitable for
new paper recommendation since it lacks citation information.

Besides, paper contents are also considered to model user interests. JTIE [25]
incorporated paper contents, authors and venues to learn user and paper repre-
sentations. Xie et al. [26] proposed a cross-domain paper recommendation model
using hierarchical LDA to learn semantic features of paper contents. Li et al. [13]
proposed JMPR to jointly embed structural features from academic network and
semantic features from paper contents. These methods alleviate the cold-start
problem, but the diversity of paper innovations was not considered. Therefore,
Xie et al. [21] proposed the subspace concept to label the paper content with
Background, Method and Result. However, they didn’t infer in subspace, that is
they ignored the knowledge propagation among subspaces.

3 New Paper Recommendation Method

3.1 Problem Definition

Given a user set U , a paper set V, we aim to learn a prediction function F(u, q | θ)
that checks whether user u ∈ U has the potential interest of the new paper q ∈ V,
where θ denotes the parameters of function F .

For an academic dataset, the academic network G is called the structural
feature, where the nodes of G are papers, authors, and other related attributes,
and the edges denote the relationships between them, including citation, etc.
Each paper contains an abstract. The abstract describes the core content of a
paper, which is called the semantic feature in this paper.
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Fig. 2. Overall framework of DTNRec

3.2 Overall Framework

DTNRec include three modules, as shown in Fig. 2, i.e. the NTM-based subspace
representation module, the GCN-based asymmetric topic propagation module,
and the user interest prediction module. In the NTM-based subspace represen-
tation module, the paper abstract is labeled with subspace tags through the
subspace tagging model. The resulting subspace text is fed into the NTM to
obtain the topic distributions over subspaces as the paper content embeddings.
In the GCN-based asymmetric topic propagation module, we adopt asymmetric
GCN on the academic network G to model the asymmetric topic propagation
among papers. The user interest prediction module predicts the probability on
how much user u being interested in a new paper q.

3.3 NTM-Based Subspace Representation

Subspace Tagging. In order to differentiate the topics in papers, we inherit
the subspace concept proposed in [21] and label the paper contents with three
subspace tags, namely Background, Method and Result, respectively, denoted by
the tag set T S = {b,m, r}. We adopt the subspace tagging model in [22] to label
the sentences of paper abstract with the subspace tags. The sentences for the
same subspace represent the corresponding subspace text.

GSM-Based Paper Representation. The subspace texts are fed into the
topic model to get the topic distributions over subspaces, which are regarded
as the initial embeddings of paper content. The existing research results show
that the topic model integrated with neural network has better performance than
traditional topic model [23]. Therefore, we adopt the Gaussian Softmax distribu-
tion topic model (GSM for short) [23], which is based on variational autoencoder.
Let D ∈ N∗ denote the topic number. The output subspace topic distributions
xb
p ∈ RD,xm

p ∈ RD,xr
p ∈ RD for paper p are the corresponding embeddings,

respectively. Paper p can be represented as matrix Xp =
(
xb
p,x

m
p ,xr

p

)� ∈ R3×D.
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Different with the existing methods directly treat the paper content as a
whole to obtain paper representation [13], our method label the paper content
with subspace tags, which helps to distinguish paper innovations.

3.4 GCN-Based Asymmetric Topic Propagation

Each citation reflects the influence of the cited paper and the interest of the
citing paper’s authors. So we model the topic propagation between papers on
the academic network as the asymmetric relations, denoted by G. The academic
influences and user interests are modeled, respectively, based on the citation rela-
tionships. For example, for a paper p ∈ V on G, its references are the neighbors
for convolution to compute the interests for the authors of p, while its citations
are used to compute its influences on the network.

For any paper p ∈ V on G, there are two matrix representations, denoted
by the interest matrix

←−
X

(h)
p and the influence matrix

−→
X

(h)
p , respectively, where

h ∈ N∗ denotes the depth of GCN, that is the number of GCN iterations.
←−
X

(h)
p

and
−→
X

(h)
p both are initialized by the paper matrix Xp. The GCN kernel function

is f , where W ∈ RD×D, U ∈ R3×D, V ∈ R3×D are all weights of f and b ∈ R3×3

is bias. Paper p′ ∈ V cited paper p.

f(p, p′, h) = σ
(−→
X (h−1)

p W
←−
X

(h−1)
p′

� + U
−→
X (h−1)

p
� + V

←−
X

(h−1)
p′

� + b
)

(1)

To compute the influence of paper p, we choose citations of p as its neighbors.
Since the number of paper neighbors may vary significantly over all papers, we
uniformly sample a fixed-size set of neighbors for each paper instead of using all
of them, denoted by Vcit

p , to keep the computational pattern of each batch fixed
and more efficient. We set |Vcit

p | = K ∈ N∗ as a hyper-parameter. Papers in Vcit
p

are combined to characterize the influence of paper p, denoted by
−→
X

(1)
Vcit

p
.
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X

(1)
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p
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p as p’s first-order

influence matrix, which is calculated as
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(1)
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)
W (1) + b(1)

)
.

In the same way, to compute the interest for the authors of paper p, we
choose a fixed-size set of references of paper p as its neighbors, denoted by Vref

p .
We set |Vref

p | = K, too. Then papers in Vref
p are combined to characterize the

interest for the authors of paper p, denoted by
←−
X

(1)
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.
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We set the maximum depth of GCN as H. Through repeating the above
process H times, we can get the H-order interest matrix

←−
X

(H)
p of paper p.

Given another paper q, to predict whether paper q will influence paper p
or whether the author of paper p will be interested in paper q, we calculate the
score c(q, p). Since citation types are diverse, we adopt maximum pooling to find
the largest topic association between different subspaces of paper p and paper q.

c(q, p) = MLP
(
maxpooling

(
Xq

←−
X (H)

p
�

))
(4)

We choose the cross entropy loss function. SP+ and SP− denote positive
sample set and negative sample set, which are sampled according to the rule-
based sample strategy [21]. Let ĉ(q, p) denote gold label. Any paper pair (p, q)
with citation relationship is sampled as positive, labeled as ĉ(q, p) = 1. The
negative samples are selected from paper pairs without citation relationship
according to the sample strategy in [21], labeled as ĉ(q, p) = 0.

L =
∑

c(q,p)∈SP+∪SP−
c(q, p) log ĉ(q, p) + λ‖θ‖22 (5)

Existing recommendation methods typically initialize paper nodes randomly
when using GCN. However, our method directly initializes paper nodes with
paper’s semantic-rich subspace embeddings. Besides, considering the asymmetry
of topic propagation among papers, we conduct asymmetric GCN on the aca-
demic network to model user interest and academic influences in a fine-grained
way.

3.5 User Interest Prediction

A new paper is recommended to the potentially interested users based on the
content. Given a new paper q, we calculate the probability whether user u will
be interested in paper q through the function F(u, q), where Vu denotes user u’s
history publications.

F(u, q) = max {c(q, p) |, p ∈ Vu} (6)

Since user interests change over time, we adopt the publications within a
period as the user interests at different times. We calculate the probability on
how much user u being interested in the paper q according to the user interests
in different periods. In this way, the user interests are more accurately modeled.

4 Experiments

In this section, we verify the effectiveness of our model on real datasets for
the new paper recommendation task. We select some baselines for compara-
tive experiments and analyze the impact of hyper-parameter settings and model
structure. Finally, we analyze the paper subspace embeddings.



50 W. Li et al.

4.1 Experimental Settings

Datasets. We use ACM2 and Scopus3 datasets. ACM dataset contains 43380
conference and journal papers in computer science. Scopus dataset is a multi-
disciplinary dataset, and we use the papers within the area of computer science,
with a total of 18842 papers. Every paper in the datasets contains the paper
abstract, authors, publication year, citation relationship, etc.

Baselines and Metrics. We compare our model with several baselines. BUIR
[10], LightGCN [11], NeuMF [12] and DirectAU [9] are CF-based methods using
the user and item interaction data. KGCN [18], KGCN-LS [19], RippleNet [20]
are AN-based methods, which introduce the side information such as keywords
besides user-item interactions. NPRec [21] jointly embed the semantic features
of paper content and structural features of academic network. DTNRec is our
model.

In real recommendation scenarios, users usually pay attention to the first few
items recommended. So we choose the nDCG@k [8] as the metric to evaluate the
ranking results. For each user, we prepare k candidates which contains at least
one paper that is actually cited by the user. The candidate papers are ranked
according to the value calculated by the function F (6). DCG@k is calculated
as DCG@k =

∑k
i=1

reli
log2(i+1) , where reli is a fixed value 5 if the i-th paper is

actually cited by the user, otherwise 0. IDCG =
∑|Ref |

i=1
5

log2(i+1) represents the
DCG value corresponding to the best rank, where |Ref | denotes the number of
papers actually cited by the user in candidate papers.

4.2 Results

Performance Analysis. The evaluation results are shown in Table 1. It shows
our model DTNRec outperforms the baselines on the new paper recommenda-
tion task. Because we introduce the concept of subspace, the paper innovations
could be well differentiated. What’s more, we fuse semantic features and struc-
tural features by performing asymmetric GCN on the academic network, whose
nodes are initialized by paper content embeddings over subspaces. In this way,
the user interests and paper influences are modeled in a fine-grained way. The
CF-based models including BUIR, LightGCN, NeuMF and DirectAU performs
worst since they only use interaction data of users and items, without considering
other information such as paper content. The AN-based models including KGCN,
KGCN-LS and RippleNet perform better than the CF-based methods, because
the academic network contains rich high-order hidden information, which is ben-
eficial for accurately modeling user preferences. Both CF-based methods and
KG-based methods consider the structural features, without considering seman-
tic features. NPRec considers both of them, so NPRec performs better than

2 https://dl.acm.org/.
3 https://www.scopus.com/.

https://dl.acm.org/
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AN-based models. However, the model structure of NPRec has limitations. It
treats the paper content representation in a whole way rather than in subspaces,
that is it ignored the knowledge propagation among subspaces.

Table 1. New paper recommendation comparison.

nDCG@k ACM Scopus

k = 20 k = 30 k = 50 k = 20 k = 30 k = 50

BUIR 0.7734 0.7083 0.6681 0.7707 0.7156 0.6626

LightGCN 0.8266 0.7703 0.7314 0.8062 0.7639 0.7231

NeuMF 0.8234 0.7730 0.7419 0.8257 0.7808 0.7234

DirectAU 0.8357 0.7898 0.7423 0.8246 0.7819 0.7235

KGCN 0.8731 0.8592 0.8437 0.8507 0.8365 0.7592

KGCN-LS 0.9093 0.9010 0.8904 0.8660 0.8548 0.8063

RippleNet 0.9217 0.9088 0.8970 0.9040 0.8673 0.8465

NPRec 0.9736 0.9688 0.9645 0.9576 0.9349 0.9021

DTNRec 0.9855 0.9844 0.9663 0.9735 0.9547 0.9329

Impact of User Interest Calculation Method. Generally, the user interest
will change over time. When we predict whether user u will be interested in a
new paper q which is published after year Y, we should consider user u’s interest
after year Y, too. Therefore, we study the impact of using user u’s interests
at different times to make predictions. The experimental results are shown in
Fig. 3(a). We calculate user interest in the following six ways.

– History-max denotes the user interest is computed as the function F (6),
where Vu denotes the publications of user u before year Y.

– Future-max replaces Vu in history-max with the publications of user u after
year Y.

– All-max replaces Vu in history-max with all the publications of user u.
– History-mean is the same as history-max, but replaces the operation of

taking the maximum value in the function F (6) with taking the mean value.
– Future-mean replaces Vu in history-mean with the publications of user u

after year Y.
– All-mean replaces Vu in history-mean with all the publications of user u.

In order to avoid information leakage, when computing user u’s interest after
year Y, we delete the citation relationship between papers published after year
Y on the academic network, which means only u’s publications after year Y
and references before year Y are considered. The results in Fig. 3(a) show that
future mode performs better than history mode and all mode. The max mode
performs better than mean mode. When the user interest is calculated in the
way of future-max, our model performs best, which also proves the user interest
will change.
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Fig. 3. The results of the four figures are all carried out on Scopus dataset. (a) Com-
parison with different user interest computation methods. The hyper-parameter setting
is D = 256, H = 1,K = 4. (b) (c) (d) are comparisons on model variants with different
K,H,D, respectively. (b) (c) (d) all choose the history-max mode.

Ablation Study. To verify the impact of model structure on model perfor-
mance, we conduct ablation experiments. The model variants are as follows.

– w Random-update randomly initializes
←−
X

(0)
p and

−→
X

(0)
p . The parameters of←−

X
(0)
p and

−→
X

(0)
p will be updated during the training process.

– w Topic-update initializes
←−
X

(0)
p and

−→
X

(0)
p with matrix Xp. And the param-

eters will be updated.
– w/o Topic-update initializes

←−
X

(0)
p and

−→
X

(0)
p in the same way as w Topic-

update, but the parameters will not be updated.

The results are shown in Fig. 3(b) and 3(d). w Random-update performs
worst. w Topic-update is better than w Random-update. And w/o Topic-
update, which is also the final setting of our model, performs best. Because the
paper subspace embeddings xb

p,x
m
p and xr

p, that are also the topic distributions
output by NTM, are rich in semantic information. They do not need to be
updated further. Instead, update brings information loss, resulting in model
performance degradation.

Hyper-parameter Study. We analyzed the impact of hyper-parameter set-
tings on model performance. Three hyperparameters are tested: the neighbor
number K, the maximum depth of GCN H, the topic number D. The results
are shown in Fig. 3(b), 3(c) and 3(d). Figure 3(b) shows that when K becomes
larger, nDCG@30 of w Random-update will decrease due to the introduction
of noise. w Topic-update and w/o Topic-update are not sensitive to the
setting of K, which means the initialization by Xp weaken the influence of K
on model performance. Figure 3(c) shows when H is set to 1, model performs
better. As H increases, model performance decreases. Because there may be
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over-smooth problem with the increase of H. As shown in Fig. 3(d), we find as
D increases, the value of nDCG@k will first rise and then fall. Because a smaller
D also means less semantic information. The topics in all papers may not be fully
covered. The model performs best when D is set to 256. When D is too large,
the model performance will decline, probably because the size of D can already
cover all the topics, and continuing to increase will not obtain richer semantic
information, but will introduce noise.

Fig. 4. Analyze the subspace embeddings. The results are based on ACM dataset. The
topic number D is set as 16, so the subspace embeddings of papers are 16-dimensional.
Then we reduce them into a 2-dimensional visual space by t-SNE [24]. Gray dots in
each figure denote all papers. (a) Subspace embeddings of papers with similar back-
ground. (b) Background embeddings of papers with different CCS tags. (c) Background
embeddings of Chengxiang Zhai’s publications. (d) (e) (f) respectively analyze the
Background, Method and Result embeddings of paper [17] and its references and cita-
tions.

Analyze the Subspace Embeddings. We analyze the subspace embeddings
from different aspects, where the ACM Computing Classification System (ACM
CCS) [7] is used as supplementary information.

In order to verify the necessity of subspace, we randomly selected a paper
[14] with CCS tag h.3.3 (information search and retrieval). Then 50 papers with
similar background to paper [14] are selected from paper set with the same CCS
tag. The similarity is obtained by calculating the Euclidean distance of back-
ground embeddings. The smaller the distance, the more similar the background.
As shown in Fig. 4(a), the red dots denote the background embeddings of the
50 papers. The yellow and blue dots represent method and result embeddings,
respectively. We find that papers with similar background may have different
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methods and results. But the topics do not differ dramatically, but vary within
a certain range of topics. So the consideration of subspace is necessary.

To verify whether the subspace embeddings of paper content could reflect
CCS tag information, we randomly chose three CCS tags: h.3.3 (information
search and retrieval), c.2.1 (network architecture and design) and d.3.4 (proces-
sors). As shown in Fig. 4(b), the papers with different CCS tag could be well
differentiated.

Figure 4(c) shows some publications of researcher Chengxiang Zhai between
1998 and 2008. The red dots denote his publications, and the color shades corre-
spond to publication years. It illustrates that the researcher’s research interests
will change within a field of study.

To study whether the subspace embeddings of paper content could reflect
the relationship between a paper and its references and citations, we randomly
selected a highly cited paper [17]. As shown in Fig. 4(d), 4(e) and 4(f), the
red star denotes paper [17], and the green and blue shapes denote references
and citations of [17], respectively. We can see that the topics between a paper
and its references and citations are all close in different subspaces. But there are
also differences, which reflect the topic propagation among different subspaces of
papers. For example, the distance between the red star [17] and the green triangle
[16] on Fig. 4(d) is closer than the distance on Fig. 4(e) and 4(f). Because the
background of paper [17] and paper [16] are all related to the classification of web
content, but they used different methods and thus got different results. Besides,
the distance between the red star [17] and the blue circle [15] on Fig. 4(d) and
4(e) are closer than the distance on Fig. 4(f). Because the backgrounds of paper
[17] and paper [15] are similar and both adopted user survey method. The results
are different is due to the core issues of their research are different. It’s worth
mention that paper [17] and paper [15] have the same author Mika. It illustrates
that the researchers tend to use similar methods in their publications.

5 Conclusion

We propose a differentiable topics based new paper recommendation model
DTNRec. In DTNRec, we adopt the subspace tagging model and NTM to get
embeddings of paper content. Then we model the user interest through the
asymmetric GCN on the academic network. The experimental results show the
effectiveness of our model.

References

1. Kreutz, C.K., Schenkel, R.: Scientific paper recommendation systems: a literature
review of recent publications. Int. J. Digit. Libr. 23(4), 335–369 (2022)

2. Lewis, M., Liu, Y., et al.: BART: denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In: Annual Meeting
of the Association for Computational Linguistics, pp. 7871–7880 (2020)

3. Radford, A., Wu, J., et al.: Language models are unsupervised multitask learners.
OpenAI blog 1(8), 9 (2019)



Differentiable Topics Guided New Paper Recommendation 55

4. Devlin, J., et al.: BERT: pre-training of deep bidirectional transformers for lan-
guage understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

5. Radford, A., Narasimhan, K., et al.: Improving language understanding by gener-
ative pre-training (2018)

6. Vaswani, A., Shazeer, N., et al.: Attention is all you need. In: Advances in Neural
Information Processing Systems, vol. 30 (2017)

7. Coulter, N., et al.: Computing classification system 1998: current status and future
maintenance report of the CCS update committee. Comput. Rev. 39(1), 1–62
(1998)

8. Wang, Y., Wang, L., et al.: A theoretical analysis of NDCG type ranking measures.
In: Conference on Learning Theory, pp. 25–54. PMLR (2013)

9. Wang, C., Yu, Y., et al.: Towards representation alignment and uniformity in
collaborative filtering. In: ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1816–1825 (2022)

10. Lee, D., Kang, S., et al.: Bootstrapping user and item representations for one-class
collaborative filtering. In: International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 317–326 (2021)

11. He, X., Deng, K., et al.: LightGCN: simplifying and powering graph convolu-
tion network for recommendation. In: International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 639–648 (2020)

12. He, X., Liao, L., et al.: Neural collaborative filtering. In: 26th International Con-
ference on World Wide Web, pp. 173–182 (2017)

13. Li, W., et al.: Joint embedding multiple feature and rule for paper recommendation.
In: Sun, Y., Liu, D., Liao, H., Fan, H., Gao, L. (eds.) ChineseCSCW. CCIS, vol.
1492, pp. 52–65. Springer, Singapore (2021). https://doi.org/10.1007/978-981-19-
4549-6 5

14. Joachims, T.: Optimizing search engines using clickthrough data. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
133–142 (2002)

15. Aula, A., et al.: Information search and re-access strategies of experienced web
users. In: International Conference on World Wide Web, pp. 583–592 (2005)

16. Dumais, S., et al.: Hierarchical classification of web content. In: ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 256–263 (2000)
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