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Abstract—Incorporating user-defined heuristic rules into neu-
ral text inference methods has the potential to align models
with user intentions and domain knowledge, thereby improv-
ing interpretability. In this study, we introduce a novel rule
pattern that includes both domain-specific keywords and the
logical relationships between keywords, which can be defined
by users. We propose an approach to integrate explicit rule-
based reasoning with the semantic modeling capabilities of neural
networks. Specifically, our method employs a parallel framework
wherein a neural classifier is trained on labeled text data for
prediction, while a Semantic-Logic Network (SLN) forms rule
inference as a satisfiability problem. We use a Jensen-Shannon
(JS) loss to ensure consistent predictions on both sides for mutual
regularization. The experiment results show that our approach
outperforms baseline methods. We also did ablation analysis on
our method, it shows that the performance of both the SLN and
the classifier contribute to the final results. Additionally, for the
case that lacks explicit user rules, we propose a boosting method
to automatically generate rules from labeled texts which is
beneficial for text inference and improve the model performance.

Index Terms—User Rules, Semantic-Logic, Text Inference

I. INTRODUCTION

Integrating user-defined rules into neural text inference model
is a highly researched topic, as it offers two key benefits. First,
user rules enhance the model performance by regulating the
learning process. The model learns not only from labeled data
but also from the prior knowledge within the rules [1]. Second,
rule-based inference improves the model interpretability. It
ensures a fully transparent and faithful decision process [2].
This is important for the tasks such as Text Subscription and
Text Review, where users express their preferences on text
subscription by rules and require the explantions for the text
inference results.

Existing methods for integrating user rules treat rule-based
inference as a probability satisfaction problem. Rules are
transformed into real values by the techniques such as soft
logic and fuzzy t-norm [1], [3], where these values represent
the probability of rule satisfaction. Maximizing the probability
of rule satisfaction is also as an additional objective. How-
ever, encoding rules as real values often loses their semantic
meanings, retaining only syntactic information [4]. Another
approach maps rules into the semantic space of text to assist
in text inference [5]. However, these methods require task-
specific rule learning objectives, such as mathematical rule
rewriting [6]. Hence, it is challenging to apply to other tasks.
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In this paper, we addresse a novel user rule pattern designed
for the tasks such as Text Subscription and Text Review.
The user rules are composed of domain-specific keywords
and logical constraints between these keywords, which are
employed to express user preferences on text subscription. For
example, the upper part of Figure 1 provides a case of user
rules for the Text Subscription task. The user is interested
in emergency news happend in a specific geographical area,
including natural disasters, social security accidents, etc. The
subscribed texts should statisfy any of these topics. Then the
user rules are formalized as keywords-level logical combina-
tion patterns with logical connectives such as conjunction and
disjunction (∧, ∨).

To incorporate this form of user rules into neural text in-
ference, we introduce a Semantic-Logic Network (SLN).
It is designed to identify whether the text complies with
user rules in a neural way. It is sequentially composed of
three detection modules. The first module checks whether
the text contains the keywords specified in the rules, while
the second module checks the conjunction of keywords, and
the third module checks the satisfaction of disjunction rules.
The results from each detection module are combined based
on the logical relationships defined in the rule, yielding the
overall satisfaction detection results on the text. Each detection
module utilizes a neural network, enabling implicit semantic
encoding for simulating explicit symbolic Boolean matching.
It is trainable using text-level labeled data and the base module
(term detection) is pre-trained on generic data to enhance
model robustness.

Additionally, we employ a parallel structure to combine the
proposed SLN with another neural classifier to further enhance
the inference performance. A Jensen-Shannon (JS) loss is
applied to ensure the consistency between the predictions of
the SLN and the classifier. In the absence of user-defined rules,
we introduce a boosting method to generate rules using labeled
data. We use information gain to identify the important key-
words and subsequently explores logical combinations to form
rules. The current rule is evaluated using the Boolean search
accuracy of the labeled data. The experiment results show
the effectiveness of automatically generated rules compared to
manually defined ones. Our main contributions are as follows:

• We introduce a novel user rule pattern that combines
domain-specific keywords and logical combinations.

• We propose a Semantic-Logic Network for integrating
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𝐾𝐾1: {Bronx, Brooklyn, Queen, etc. }
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𝐾𝐾4: {Hit and run, Car accident, etc. }
…
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𝐾𝐾1 ∧ (𝐾𝐾2 ∨ 𝐾𝐾3 ∨ 𝐾𝐾4 ∨ 𝐾𝐾5 ∨ ⋯ )

The parallel prediction integrating user rules into neural text inference   

Term 
detection

User rules =

Texts

The DNF formula Conjunction 
detection

The Semantic-Logic Network Parallel prediction consistency

�
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

( �
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
Results 
combine

Disjunction 
detection

General 
data

Results 
combine

�𝑦𝑦𝑡𝑡𝑑𝑑𝑟𝑟𝑡𝑡

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿1 = 𝐶𝐶𝐶𝐶( �𝑦𝑦𝑡𝑡𝑑𝑑𝑟𝑟𝑡𝑡 , 𝑦𝑦)

Texts
Text 

classifier

�𝑦𝑦𝑑𝑑

JS 
distance

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 = 𝐶𝐶𝐶𝐶( �𝑦𝑦𝑑𝑑 ,𝑦𝑦)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿3 = 𝐽𝐽𝐽𝐽( �𝑦𝑦𝑡𝑡𝑑𝑑𝑟𝑟𝑡𝑡|| �𝑦𝑦𝑑𝑑)User rules

Pre-training

Fig. 1. User expresses news preference with keyword-level logic rules. The block below illustrates the framework of our approach, integrating the user defined
rules into neural text inference.

user rules into neural text inference. The use of a parallel
structure and JS loss ensures the prediction consistency.

• Experimental results indicate that our model outperforms
baseline methods on multiple tasks. We also provide a
detailed analysis of the impact of rules on the model
performance.

II. RELATED WORK

The most relevant works are the text classification methods,
which directly classify texts of interest and disinterest to users
based on a large amount of labeled data. Examples include
convolutional neural networks (CNNs) [7], [8], recurrent neu-
ral networks (RNNs) with attentions or gates [9]–[11], and
pretrained language model-based methods [12]–[16]. While
these methods perform well provided with sufficient labeled
data, they often lack explainability.

The representative methods for incorporating rules often model
rule inference as the probabilistic logic satisfiability problem.
Techniques such as fuzzy t-norm [1] and probabilistic soft
logic [3] are employed to convert the rules into real val-
ues, representing the probabilities of rule satisfaction. Then,
additional logical constraints are introduced by maximizing
the probabilities of rule satisfaction during model training.
However, these methods often sacrifice semantic meanings
for syntax [4]. Some researchers treat logic rules as trainable
representations [6], [17]. However, these methods require task-
specific rule learning objectives. Hence, it is challenging
to apply to our tasks, where there is a more flexible user
rule pattern that contains domain-specific keywords and their
logical relationships.

Our work is also related to methods that use the consistency
constraints to improve prediction performance on various
tasks. The consistency constraints are typically applied be-
tween two models with the same prediction objective but
different views, such as between extractive and abstractive
summarization models [18], between sentence-level and word-
level category prediction models [19], and between classifiers
based on source text and summary [20]. Prior research has
demonstrated that enforcing consistency constraints during
model training can effectively improve model performances
[21].

III. METHOD

A. Problem Definition and Framework

The user-rule is an expression F that defines logical rela-
tionships between keywords, using logical connectives ∨,∧.
Each term K represents a set of keywords that are either
topic-related or semantically correalated with each other. The
formula F can be converted into an equivalent Disjunctive
Normal Form (DNF). In DNF, a simple conjunctive formula
r consists of terms represented as r =

∧κ
i=1 Ki, where κ is

the number of terms in r. The DNF is obtained by taking
the disjunction of simple conjunctive formulas, denoted as
DNF =

∨τ
j=1 rj , where τ is the number of r. The set of

all simple conjunctive formulas in the user rule is denoted as
R = {r1, r2, ..., rτ}. For simplicity, in the following text, we
refer to a simple conjunctive formula r as a rule.

The task of text inference is to determine whether a given
text x ∈ X satisfies the user rule set R. Due to the nature
of DNF, satisfaction of any r ∈ R is sufficient. The inference
model provides a text-level prediction probability ŷ ∈ (0, 1)
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and a rule-level prediction probability set {ŷr1, ŷr2, ..., ŷrτ}. Each
ŷri ∈ (0, 1) represents the probability that the text x satisfies
the rule ri. The detected rules offer an explanation of the input
text to the user. Our task framework is illustrated in Figure 1,
which includes a parallel structure that combines the proposed
SLN with a neural classifier using a mutual JS loss.

B. Semantic-Logic Network

The SLN is designed to determine whether a text satisfies
the defined semantics by keywords and their combinations in
the given rule. It is composed of three sequentially arranged
detection networks.
1) Term Detection: To determine if the text x contains the
meanings of a keyword k ∈ K in the given rule, we calculate
the relevance between each word in x and each keyword
k ∈ K, by computing the dot product of their pretrained
embedding vectors. The embedding matrices for the text is
denoted as xe and the keywords vector is denoted by K (Sec-
tion IV-A2). The resulting vector a is obtained through matrix
multiplication: a = xe × K. Next, a is concatenated with
the text representation vector x for information integration,
where x is obtain by a lightweight network TextCNN [7].
We employ an MLP network to amalgamate information from
x and K while reducing dimension, resulting in the vector
t = MLP (x⊕ a).

The predicted result ŷt = σ(Wt + b) is evaluated against
the true label yt using the cross-entropy loss function: Lt =
cross entropy(yt, ŷt). The true label yt is obtained through
string matching between the text and keywords.
2) Conjunction Detection: To verify if the text x satisfies the
conjunctive fomular r ∈ R, we leverage the information in
the vector t, which merges the information of the text and the
keywords, to combine the term detection results. We employ
a CNet, which is a three-layer MLP, to capture the fusion
information of x and r. The input to CNet is the concatenated
vector of ti corresponding to each term ti contained in rule r.
The terms in r have conjunctive relationships with each other.

r = CNet|K∗ in r(t1 ⊕ t2 ⊕ ...) (1)

The evaluation is performed by calculating the cross-entropy
loss, denoted as Lr = cross entropy(yr, ŷr), between the
predicted probability ŷr and the true label yr. The true label
yr is obtain through a Boolean check on x using the rule r.
3) DNF Prediction: Similarly, we employ a DNet to deter-
mine whether the text satisfies the final rule in the DNF
form. The DNet takes the concatenated vectors r as input,
allowing the network to capture the interactions between the
rule features. The output of the DNet is then compared to the
ground truth label y of the text x to evaluate the satisfaction of
the DNF. The loss is LR = cross entropy(yR, ŷR), where:

ŷR = DNet|r∗∈R(r1 ⊕ r2 ⊕ ...) (2)

4) Parallel Prediction: To improve the model performance,
we adopt a parallel structure that combines the SLN and
a neural classifier. The text is simultaneously provided as

input into both SLN and the classifier for prediction. To
ensure the consistency of their predictions, we calculate the
Jensen-Shannon (JS) distance between the output predictions
of the classifier (P (x)) and the SLN (Q(x)). The JS dis-
tance, denoted as JS(P ||Q), is a variant of the Kullback-
Leibler (KL) divergence that addresses the asymmetry issue. It
quantifies the difference between two probability distributions.
Specifically, the JS distance is calculated as the average of two
KL divergences:

JS(P ||Q) =
KL(P ||P,Q) +KL(Q||P,Q)

2
(3)

To maintain the consistency, we incorporate the JS distance
as a regularization term in the joint loss for fine-tuning. The
joint loss Lu is defined as follows, where hyperparameters
α ∈ (0, 1) and β ∈ (0, 1) control the tradeoff between the
neural classifier and the SLN:

Lu = αL+ βLR + (1− α− β)JS(P ||Q) (4)

5) Training Process: The term detection module is initially
trained on a general corpus [22]. Subsequently, the conjunction
detection module is added and trained under the given con-
junctive rules. All parameters are updated during this process,
while Lt is suspended.

Subsequently, the disjunction detection module is added for
further training on the text-level labeled data. The previous
losses (Lt and Lr) are suspended, and the SLN, with all
parameters updatable, is trained using the loss function LR.

The classifier is pre-trained on labeled text data. Then the
pre-trained SLN and the pre-trained classifier are combined
for further fine-tuning. Lu is used as the loss for this process.

C. Automatic Generation of Rules

To automatically generate rules in the absence of user-defined
rules, we propose a two-stage process using the labeled text
dataset. In the first stage, we extract the user preferences
from the dataset by identifying important keywords. Unlike
traditional methods that operate at the text level, our approach
uses Information Gain (IG) to identify the important keywords
to distinct positive and negative samples.

Let V = {v1, v2, ..., v|V |} represent the vocabulary corre-
sponding to the sample set X , where |V | denotes the size of
V . The information entropy H(y) quantifies the uncertainty of
the label y: H(y) = −

∑
y=0,1 p(y) log p(y). For a given word

v ∈ V , the variable ev ∈ {0, 1} indicates whether the text x
contains the word v. Here, ev = 1 (denoted as ev1) indicates
the presence of a word v in x, while ev = 0 (denoted as
ev0) indicates its absence. The conditional entropy H(y|ev)
quantifies the uncertainty of the label y when the existence of
v is known. The conditional entropy H(y|ev1) is calculated
as: H(y|ev1) = −

∑
y=0,1 p(y|ev1) log p(y|ev1). Similarly, we

have H(y|ev0). The overall conditional entropy H(y|ev) and
the information gain of a word v is as follows:

H(y|ev) = −
∑

ev=0,1

p(ev)H(y|ev) (5)
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TABLE I
EXAMPLES OF THE emergency DATASET.

Content Label
Typhoon lichema landed in (exact region). The

meteorological observatory continues to issue a Red
Rainstorm warning.

1

(exact region) was ravaged by lichema. After the
typhoon, seafood was picked up casually, and a

group of fish ”bouncing”.
0

Affected by Typhoon lichima, it has rained for
many days in (exact region), and now it has ushered

in a small sunny day.
0

IG(y, ev) = H(y)−H(y|ev) (6)

In the second stage, we search for the combinations of the
high-information-gain keywords to form the conjunctive rules.
The current rule is evaluated by the Boolean search accuracy
on the labeled data. An evaluation score s is defined to quantify
the suitability of the current rule:

s =

∑
i I(yli = yi)

|X|
(7)

where yli is the Boolean matching results on text xi using
the current rule. We select the top-scoring conjunctive rules
to construct the DNF. By eliminating unnecessary keywords,
our method optimizes the search space. The complexity for
keyword extraction is O(|X| · |V |) and for conjunctive rule
generation is O(|X|).

IV. EXPERIMENTS

A. Text Subscription

1) Dataset: The emergency dataset focuses on the emer-
gencies news occurring in a certain region, covering top-
ics such as natural disasters, societal governance,
production safety incidents and etc. The dataset comprises
80,000 samples, with an equal distribution of positive and
negative samples. The text samples are padded to a maximum
length of 400 tokens.

In Table I, both positive and negative samples contain key-
words like typhoon, rainstorm, and the specific region.
However, positive samples provide the essential semantic in
the context characterizing emergencies, while negative samples
not. Therefore, it is necessary to consider both keywords and
context semantics in handling the above task. For the rules
in the emergency dataset, Figure 1 provides a breif version
of example that does not include some subdomains such as
Meteorological Disasters.
2) Model Implementation: For the SLN model, the term and
the rule embedding dimensions are set to 200. We use the
Adam optimizer with a dropout ratio of 0.5 at each fully
connected layer. The JS ratio is set to 0.2, while α = β = 0.4.

The vector K is the average of all keywords in the set K. This
captures the shared semantic features among synonyms, which
are often closely related in the semantic space. Although there
should be a logical ∨ relationship among keywords within a

TABLE II
MODEL COMPARISON RESULTS ON emergency AND SAR.

Model emergency SAR
prec. rec. F1 prec. rec. F1

Boolean Search 77.0 74.5 75.7 81.6 76.6 79.0
TextCNN 94.0 93.6 93.8 92.7 96.7 94.7
BiLSTM 95.5 91.9 93.7 92.9 96.6 94.7

BiLSTM-2DCNN 95.2 93.7 94.4 94.3 96.6 94.7
HAN 95.7 93.6 94.6 - - -

LSTM-Capsual 95.7 93.2 94.4 94.3 96.7 95.4
BERT 96.8 94.5 95.6 95.6 96.7 96.1

RoBERTa 96.4 94.7 95.5 95.7 96.9 95.8
SLN 94.6 94.2 94.4 92.6 97.6 95.0

SLN+BERT 98.4 98.4 98.4 97.2 97.9 97.5

set, expanding the rules in this way would result in exponential
complexity, which is related to the size of the set.

Additionally, for geographical keyword sets that include place
names, to mitigate embedding issues arising from diverse
geographic names, we replace all subordinate geographic
names with their superior counterparts. For instance, if a user
is interested in events occurring in the New Y ork region,
then Brooklyn would also satisfy the condition. Therefore,
all subordinate regions under New Y ork are replaced with
New Y ork.
3) Comparision Methods: We compare our approach with the
traditional Boolean Search baseline, which performs a hard
matching of the text and the given rule. We also adopt some
advanced text classification baselines, each utilizing different
structures for text embedding. The TextCNN [7] approach
employs convolutional kernels of various heights to extract
features from the text. BiLSTM integrates two layers of LSTM
[9] in opposite directions to capture sequential information.
BiLSTM-2DCNN [23] utilizes two-dimensional convolution
and pooling operations to derive a text representation. HAN
[10] combines word-level and sentence-level BiLSTM to cap-
ture hierarchical information. LSTM-CAPSUAL [24] encodes
the input text using an LSTM layer and employs capsule net-
works for classification. For the Pre-trained Language Models
based methods, we compared with BERT [14] and RoBERTa
[15] models, which are fine-tuned on the emergency dataset.
4) Results and Analysis: Table II shows the inference results
on the emergency dataset. All the results are the average of
10-fold experiments. The upper block includes the results of
baselines trained solely on emergency, while the lower block
comprises the results of our parallel models that combine
BERT [14] with SLN.

The results of the proposed parallel model demonstrate a
notable improvement of 4% in accuracy and 4.2% in recall
compared to the individually trained SLN. The incorporation
of the JS distance in the joint loss improves the consistency of
the predictions between the classifier and the SLN. Moreover,
the SLN enables more precise handling of user concerns by
separately detecting conjunctive rules. For the hyperparam-
eters, we observed that changing the rule embedding sizes
within the range of 150-250 had trival impacts on performance.
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TABLE III
RESULTS (%) OF ABLATION TESTS ON THE SLN MODULES.

Model SLN Parallel
acc. F1 acc. F1

+min+maxw\o 75.9 69.2 93.1 82.4
+CNet+maxw\o 76.1 74.9 94.9 94.8
+CNet+DNetw\o - - 96.3 96.2
+min+maxw\ 94.1 94.0 95.6 95.8
+CNet+maxw\ 94.4 94.4 98.1 98.1
+CNet+DNetw\ 94.4 94.4 98.4 98.4

However, the JS setting had a more substantial influence. The
accuracy varied by up to 2% within the JS range of 0.2-0.8.
5) Ablation Study: In the ablation study, we evaluate the
parts of SLN, particularly focusing on CNet and DNet. We
also evaluate the effect of fine-tuning SLN based on the text-
level supervision. Specifically, we compare the performance
of CNet and DNet implemented with MLP versus min/max
functions. The min function outputs the minimum detection
probability of all terms belonging to the conjunctive formula,
while the max function outputs the maximum detection proba-
bility of all conjunctive formulas within the DNF. Additionally,
we compare the performance of the SLN fine-tuned under the
labeled text (w/) with the SLN without fine-tuning (w/o),
where the latter directly outputs the disjunction detection
results ŷR as the inference result.

Table III shows the results of the ablation study. The +min
model refers to replace the CNet with the min function,
while the +max model is to replace the DNet with the
max function. The +min + max model only adjusts the
parameters in the term detection module during training. From
the results, we can see that the +CNet + DNet model
achieves the highest average accuracy and F1 score with stable
performances. However, the +min + max model offers a
more concise structure and comparable results, making it an
attractive alternative considering the training cost.
6) Analysis of The Parallel Structure: We conducted an anal-
ysis of the impact of parallel training on SLN and the neural
classifier (TextCNN [7] in this case). We provide statistics on
the number of samples predicted by the model in different
probability intervals in Figure 2. We employ False Prediction
Masking (FPM), where the red box signifies the number after
removing False Negatives, and the green box represents the
number after removing False Positives, as shown in Figure
2(b), (c), and (d).

Comparing Figure 2(a) with (b), there is a notable improve-
ment in recall after joint training. From Figure 2(a) to (c), the
SLN exhibits higher confidence in assigning low probabilities
(0-0.25) due to its logical inference certainty. From Figure 2(a)
to (d), TextCNN demonstrates high confidence in assigning
high probabilities (0.75-1) because of its ability to capture
semantic information. After joint training, TextCNN assigns
higher probabilities to positive samples (0.5-0.75) to (0.75-1),
indicating increased confidence in True Positive predictions.
The SLN assigns lower probabilities to negative samples (0.25-

TABLE IV
THE EXPERT RULES OF THE SAR TASK.

K# Content K# Content
K1 {has no right etc.} K6 {handle, etc.}
K2 {shareholder, etc.} K7 {without consent, etc.}
K3 {actual investor.} K8 {loss, deficit., etc.}
K4 {equity, etc.} K9 {compensate, etc.}
K5 {pledge, etc.}
rϵ1 K1 ∧ ((K2 ∧K3) ∨K7) ∧K5 ∧K8 ∧K9

rϵ2 K1 ∧ ((K2 ∧K3) ∨K7) ∧K4 ∧K5 ∧K8 ∧K9

rϵ3 K1 ∧ (K2 ∨K3 ∨K7) ∧ (K5 ∨K6)

TABLE V
INFERENCE RESULTS (%) WITH DIFFERENT RULES.

Rules Parallel Predictions
prec. rec. F1 acc.

rϵ1 95.0 97.3 96.1 96.1
rϵ2 95.6 96.7 94.9 96.1
rϵ3 95.7 98.2 96.9 96.9
rι1 90.6 95.1 92.8 92.6
rι2 92.5 92.9 92.6 92.6
rµ 94.5 96.2 95.3 95.3
rν 95.6 97.9 96.7 96.7

0.5) to (0-0.25), demonstrating higher confidence in True
Negative predictions.

B. Text Review Task

We evaluate our proposed method on another task called
Subjective Answer Grading (SAG). This task is to determine
whether a student answer text, in response to a subjective
question, meets a specific scoring criteria. The scoring criteria
are formalized as rules defined by the graders, containing
keywords and their logical relationships, which describe the
knowledge points required for subjective questions.
1) Dataset and Rules: For this task, an English version of the
dataset subset is publicly available1. In Table IV, we present
three rules provided by the different graders.
2) Results and Analysis: The results are presented in Table
II, where rϵ3 is used as the user-defined rules. Our method
outperforms BERT in this task, demonstrating the effectiveness
of our approach in evaluating both logical matching and
semantic relevance between student answers and the scoring
criteria.

To evaluate the effectiveness of our rule generation method, we
applied rules generated by various methods to both the SLN
and parallel inference and compared their performance. The
rules for comparison include expert-provided rules (rϵ∗), rules
generated by randomly extracting and combining keywords
(rι1,2), rules generated using Boolean search indicators (rµ),
and rules generated by our method (rν). Table V shows the
comparison results. From the results, it is evident that rules
generated by our method closely approach the performance of
expert-provided rules in terms of model performance.

1http://splab.sdu.edu.cn/xscg/sjjydm.htm
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(a) The Prediction consisitency.
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(b) The Prediction consisitency with False Prediction masked.
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(c) The Prediction consisitency with False Prediction masked on SLN.

0 0.25 0.5 0.75 1
TextCNN Predictions

1
0.

75
0.

5
0.

25
SL

N 
Pr

ed
ict

io
ns

33.0 2.0 340.0 3300.0

420.0 36.0 430.0 620.0

2600.0 50.0 120.0 67.0

3400.0 25.0 23.0 10.0 500

1000

1500

2000

2500

3000

0 0.25 0.5 0.75 1
TextCNN Predictions

1
0.

75
0.

5
0.

25
SL

N 
Pr

ed
ict

io
ns

10.0 1.0 18.0 3400.0

93.0 16.0 35.0 1600.0

370.0 50.0 10.0 460.0

3800.0 380.0 48.0 400.0 500

1000

1500

2000

2500

3000

3500

(d) The Prediction consisitency with False Prediction masked on TextCNN.

Fig. 2. Statistical analysis of the prediction consistency. In each subfigure, the left image represents the independently trained models, while the right image
represents the jointly trained models.

V. CONCLUSION

Our approach integrates user-defined rules with neural text
inference to enhance the model performance and interpretabil-
ity. We employ a parallel framework that includes a neural
classifier and the proposed Semantic-Logic Network to address
the problem of combining explicit rule-based reasoning with
implicit semantic inference. We introduce a JS loss on the par-
allel training to ensure the consistent predictions, which is the
mutual regularization of the models. In the absence of explicit
rules, we employ a boosting strategy to generate valuable rules
from labeled texts. Experimental results demonstrate that our
approach outperforms the baseline methods on tasks such as
Text Review and Text Subscription. And the generated rules
helpful on improving the model performance.
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