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Abstract—Incorporating user-defined heuristic rules into neu-
ral text inference methods has the potential to align models
with user intentions and domain knowledge, thereby improv-
ing interpretability. In this study, we introduce a novel rule
pattern that includes both domain-specific keywords and the
logical relationships between keywords, which can be defined
by users. We propose an approach to integrate explicit rule-
based reasoning with the semantic modeling capabilities of neural
networks. Specifically, our method employs a parallel framework
wherein a neural classifier is trained on labeled text data for
prediction, while a Semantic-Logic Network (SLN) forms rule
inference as a satisfiability problem. We use a Jensen-Shannon
(JS) loss to ensure consistent predictions on both sides for mutual
regularization. The experiment results show that our approach
outperforms baseline methods. We also did ablation analysis on
our method, it shows that the performance of both the SLN and
the classifier contribute to the final results. Additionally, for the
case that lacks explicit user rules, we propose a boosting method
to automatically generate rules from labeled texts which is
beneficial for text inference and improve the model performance.

Index Terms—User Rules, Semantic-Logic, Text Inference

I. INTRODUCTION

Integrating user-defined rules into neural text inference model
is a highly researched topic, as it offers two key benefits. First,
user rules enhance the model performance by regulating the
arning process. The model lear only from labeled data

t also from the prior knowledg in the rules [1]. Second,
le-based inference improves odel interpretability. It
nsures a fully transparent and ul decision process [2].

O his is important for the tasks as Text Subscription and
’ ,3

Text Review, where users exp Stheir preferences on text

subscription by rules and requ/ the explantions for the text
inference results. \
4

user rules treat rule-based
tsfaction problem. Rules are
the techniques such as soft

, where these values represent
on. Maximizing the probability
n additional objective. How-
ever, encoding rules as r lues often loses their semantic
meanings, retaining only actic information [4]. Another
approach maps rules into the semantic space of text to assist
in text inference [5]. However, these methods require task-
specific rule learning objectives, such as mathematical rule
rewriting [6]. Hence, it is challenging to apply to other tasks.

Existing methods for integra
inference as a probability
transformed into real values
logic and fuzzy t-norm [1]
the probability of rule sati

of rule satisfaction is als
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s. The current rule is evaluat
uracy of the labeled data. Th

In this paper, we addresse a novel user rule pattern designed
for the tasks such as Text Subscription and Text Review.
The user rules are composed of domain-specific keywords
and logical constraints between these keywords, which are
employed to express user preferences on text subscription. For
example, the upper part of Figure 1 provides a case of user
rules for the Text Subscription task. The user is interested
in emergency news happend in a specific geographical area,
including natural disasters, social security accidents, etc. The
subscribed texts should statisfy any of these topics. Then the
user rules are formalized as keywords-level logical combina-
tion patterns with logical connectives such as conjunction and
disjunction (A, V).

To incorporate this form of user rules into neural text in-
ference, we introduce a Semantic-Logic Network (SLN).
It is designed to identify whether the text complies with
user rules in a neural way. It is sequentially composed of
three detection modules. The first module checks whether
the text contains the keywords specified in the rules, while
the second module checks the conjunction of keywords, and
the third module checks the satisfaction of disjunction rules.
The results from each detection module are combined based
on the logical relationships defined in the rule, yielding the

overalisatisfaction detection results on the gext. Each detection
mod fllizes a neural network, enabli blicit semantic
encogig®\for simulating explicit symbolig Bd¢lean matching.
Itis ble using text-level labeled data he base module
(tem ection) is pre-trained on gen data to enhance
mo; bustness. g,

L d L d Q

i\nally, we employ a parallel st to combine the
ho ed SLN with another neural classiNey to further enhance

erence performance. A Jens nnon (JS) loss is
i€d to ensure the consistency be\t the predictions of
LN and the classifier. In the abs_ of user-defined rules,
thtroduce a boosting method to ge; e rules using labeled
. We use information gain to i #y the important key-
ds and subsequently explores 1 combinations to form
#hg the Boolean search
periment results show
the effectiveness of automatically generated rules compared to
manually defined ones. Our main contributions are as follows:

e We introduce a novel user rule pattern that combines
domain-specific keywords and logical combinations.
o« We propose a Semantic-Logic Network for integrating
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ich directly classify texts of in
sed on a large amount of lab
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Fig. 1. User expresses news preference with keyword-level logic rules. The block below illustrates the framework of our approach, integrating the user defined

rules into neural text inference.

user rules into neural text inference. The use of a parallel
structure and JS loss ensures the prediction consistency.

o Experimental results indicate that our model outperforms
baseline methods on multiple tasks. We also provide a
detailed analysis of the impact of rules on the model
performance.

II. RELATED WORK

The most relevant works are the text classification methods,
and disinterest to users
ata. Examples include
[71, [8], recurrent neu-
or gates [9]-[11], and

pretrained language model-bas \\ﬁethods [12]-[16]. While

nvolutional neural networks (

data, they often lack explainal

N
N
]*Q these methods perform well [J@v{ded with sufficient labeled
2

v

1€

X

The representative methods fe{finedrporating rules often model
rule inference as the probabills{tlogic satisfiability problem.
Techniques such as fuzzy Magrm [1] and probabilistic soft
logic [3] are employed to” ert the rules into real val-
ues, representing the probaP¥isies of rule satisfaction. Then,
additional logical constra'}!\\re introduced by maximizing
the probabilities of rule action during model training.
However, these methods “{{dn sacrifice semantic meanings
for syntax [4]. Some researchers treat logic rules as trainable
representations [6], [17]. However, these methods require task-
specific rule learning objectives. Hence, it is challenging
to apply to our tasks, where there is a more flexible user
rule pattern that contains domain-specific keywords and their
logical relationships.

Our work is also related to methods that use the consistency
constraints to improve prediction performance on various
tasks. The consistency constraints are typically applied be-
tween two models with the same prediction objective but
different views, such as between extractive and abstractive
summarization models [18], between sentence-level and word-
level category prediction models [19], and between classifiers
based on source text and summary [20]. Prior research has
demonstrated that enforcing consistency constraints during
modelnraining can effectively improve mQdel performances

[21].
1. METHOD ~/H>(

A. %}n Definition and Framework

The -rule is an expression F' thadq es logical rela-
tio @s between keywords, using lo 'ga‘}\ onnectives V, A.
Eagh\strm K represents a set of ke s that are either
t i%ﬁlated or semantically correalatg ﬁtﬂh each other. The
la F' can be converted into anJ€quivalent Disjunctive
al Form (DNF). In DNF, a simple\conjunctive formula
nsists of terms represented as 7| ©_, K;, where k is
umber of terms in r. The D obtained by taking
’disjunction of simple conjun \?ormulas, denoted as

F = \/j_,rj, where 7 is th ber of 7. The set of
simple conjunctive formulas i user rule is denoted as
= {ry,72,...,7; }. For simplicity, ir the following text, we
refer to a simple conjunctive formula 7 as a rule.

The task of text inference is to determine whether a given
text x € X satisfies the user rule set R. Due to the nature
of DNF, satisfaction of any r € R is sufficient. The inference
model provides a text-level prediction probability § € (0, 1)
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and a rule-level prediction probability set {47, 45, ..., 4~ }. Each
97 € (0,1) represents the probability that the text x satisfies
the rule r;. The detected rules offer an explanation of the input
text to the user. Our task framework is illustrated in Figure 1,
which includes a parallel structure that combines the proposed
SLN with a neural classifier using a mutual JS loss.

B. Semantic-Logic Network

The SLN is designed to determine whether a text satisfies
the defined semantics by keywords and their combinations in
the given rule. It is composed of three sequentially arranged
detection networks.

1) Term Detection: To determine if the text x contains the
meanings of a keyword k € K in the given rule, we calculate
the relevance between each word in z and each keyword
k € K, by computing the dot product of their pretrained
embedding vectors. The embedding matrices for the text is
denoted as x. and the keywords vector is denoted by K (Sec-
tion IV-A2). The resulting vector a is obtained through matrix
multiplication: a = x. X K. Next, a is concatenated with
the text representation vector & for information integration,
where x is obtain by a lightweight network TextCNN [7].
We employ an MLP network to amalgamate information from
z and K while reducing dimension, resulting in the vector
t=MLP(x® a).

The predicted result j* = o(Wt + b) is evaluated against
the true label y® using the cross-entropy loss function: L; =
cross_entropy(yt,4t). The true label 4! is obtained through
string matching between the text and keywords.

2) Conjunction Detection: To verify if the text x satisfies the
conjunctive fomular » € R, we leverage the information in
the vector ¢, which merges the information of the text and the
keywords, to combine the term detection results. We employ

a CNet, which is a three-layer P, to capture the fusion
ormation of x and r. The inpu et is the concatenated
ector of t; corresponding to eac t; contained in rule 7.
~/&(he terms in r have conjunctive\ onships with each other.

Q) r = CNet|k, m-l{}‘@@ to®...) (1)
¢§ ‘&

N\ The evaluation is performed b ,c%culating the cross-entropy
\)( loss, denoted as‘pr = cross ropy(y”,4"), between the
¢ predicted probability 4" and #he gkue label y". The true label

K y" is obtain through a Boole eck on z using the rule r.
A 3) DNF Prediction: Simila¥y,We employ a DNet to deter-
mine whether the text satt the final rule in the DNF
form. The DNet takes th atenated vectors 7 as input,
allowing the network to c%e the interactions between the
rule features. The output
ground truth label y of th
the DNF. The loss is Lr = cross_entropy(y't, §%), where:

DNet is then compared to the

9" = DNet|, cr(ri ®ra @ ...) (2)

4) Parallel Prediction: To improve the model performance,
we adopt a parallel structure that combines the SLN and
a neural classifier. The text is simultaneously provided as

input into both SLN and the classifier for prediction. To
ensure the consistency of their predictions, we calculate the
Jensen-Shannon (JS) distance between the output predictions
of the classifier (P(z)) and the SLN (Q(z)). The JS dis-
tance, denoted as JS(P||Q), is a variant of the Kullback-
Leibler (KL) divergence that addresses the asymmetry issue. It
quantifies the difference between two probability distributions.
Specifically, the JS distance is calculated as the average of two
KL divergences:
KL(PIPQ) + KLQIPQ)
2
To maintain the consistency, we incorporate the JS distance
as a regularization term in the joint loss for fine-tuning. The
joint loss L, is defined as follows, where hyperparameters
€ (0,1) and 8 € (0,1) control the tradeoff between the
neural classifier and the SLN:

L,=alL+BLp+ (1 —-a—p3)JS(P||Q) “4)

5) Training Process: The term detection module is initially
trained on a general corpus [22]. Subsequently, the conjunction
detection module is added and trained under the given con-
junctive rules. All parameters are updated during this process,
while L, is suspended.

JS(PllQ) =

Subsequently, the disjunction detection module is added for
further training on the text-level labeled data. The previous
losses (L; and L,) are suspended, and the SLN, with all
parameters updatable, is trained using the loss function Lp.

The classifier is pre-trained on labeled text data. Then the
pre-trained SLN and the pre-trained classifier are combined
for further fine-tuning. L,, is used as the loss for this process.

C. Automatic Generation of Rules

To autgmatically generate rules in the abseqce of user-defined
rules, ropose a two-stage process us e labeled text

datas the first stage, we extract t Ser preferences
fro ¢)dataset by identifying importa words. Unlike
trad}bll methods that operate at the te 1, our approach
use’]J@rmation Gain (IG) to identify tlh@ortant keywords

to drsct positive and negative samplee <\
,\ p 2 PIEF
L \)ﬁ: {v1,v2, ..., vy} represent vocabulary corre-
nding to the sample set X, where enotes the size of
)

N

information entropy H (y) qua s the uncertainty of

bel y: H(y) = —3, 0, P(y) 19 . For a given word
V', the variable e, € {0,1} indi whether the text z
ains the word v. Here, ¢, = g;ed as e,1) indicates
§ o
t

@ presence of a word v in z, = 0 (denoted as
nal entropy H (yle,)

+) 1ndicates its absence. The ¢
x to evaluate the satisfaction of\\q\antiﬁes the uncertainty of the la when the existence of

vis known. The conditional entropy ‘H (y|e,1) is calculated
as: H(ylew1) = — 32,0 1 P(ylev1) log p(yley1). Similarly, we
have H (y|eyo). The overall conditional entropy H (y|e,) and
the information gain of a word v is as follows:

H(yle,) = — Z pley)H (yley) (5)

e,=0,1
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TABLE I
EXAMPLES OF THE emergency DATASET.

TABLE II
MODEL COMPARISON RESULTS ON emergency AND SAR.

Content Label
Typhoon lichema landed in (exact region). The
meteorological observatory continues to issue a Red 1

Rainstorm warning.
(exact region) was ravaged by lichema. After the
typhoon, seafood was picked up casually, and a 0
group of fish “bouncing”.
Affected by Typhoon lichima, it has rained for
many days in (exact region), and now it has ushered 0
in a small sunny day.

IG(y,e,) = H(y) — H(yle,) (6)

In the second stage, we search for the combinations of the
high-information-gain keywords to form the conjunctive rules.
The current rule is evaluated by the Boolean search accuracy
on the labeled data. An evaluation score s is defined to quantify
the suitability of the current rule:

_ 2y =)

=T @

where y! is the Boolean matching results on text z; using
the current rule. We select the top-scoring conjunctive rules
to construct the DNF. By eliminating unnecessary keywords,
our method optimizes the search space. The complexity for
keyword extraction is O(|X| - |V|) and for conjunctive rule
generation is O(]X]).

1V. EXPERIMENTS
A. Text Subscription

1) Dataset: The emergency dataset focuses on the emer-
gencies news occurring in a certain region, covering top-
ics such as natural disasters, societal governance,
oduction safety incidents an The dataset comprises
,000 samples, with an equal ution of positive and
gative samples. The text samp! padded to a maximum

\\ength of 400 tokens. \
~In Table I, both positive and j@ve samples contain key-

&

g
;Q words like typhoon, minst?jm, and the specific region.
v

1

However, positive samples pr: % the essential semantic in
the context characterizing em XH ies, while negative samples
not. Therefore, it is necessar%onsider both keywords and
context semantics in handli e above task. For the rules
in the emergency dataset, ElgMge 1 provides a breif version
of example that does not igcluide some subdomains such as
Meteorological Disasters. <
2) Model Implementation the SLN model, the term and
the rule embedding dim ns are set to 200. We use the
Adam optimizer with a out ratio of 0.5 at each fully

connected layer. The JS ratio is set to 0.2, while « = 5 = 0.4.

The vector K is the average of all keywords in the set K. This
captures the shared semantic features among synonyms, which
are often closely related in the semantic space. Although there
should be a logical V relationship among keywords within a

emergency SAR

Model prec.  rec. F1 prec.  rec. F1
Boolean Search 710 745 757 | 81.6 766 79.0
TextCNN 940 93.6 938 | 927 96.7 94.7
BiLSTM 955 919 937 | 929 966 94.7
BILSTM-2DCNN | 952 937 944 | 943 96.6 94.7

HAN 95.7 93.6 946 - - -
LSTM-Capsual 9577 932 944 | 943 967 954
BERT 96.8 945 956 | 956 967 96.1
RoBERTa 964 947 955 | 957 969 958
SLN 946 942 944 | 926 976 950
SLN+BERT 984 984 984 | 972 979 975

set, expanding the rules in this way would result in exponential
complexity, which is related to the size of the set.

Additionally, for geographical keyword sets that include place
names, to mitigate embedding issues arising from diverse
geographic names, we replace all subordinate geographic
names with their superior counterparts. For instance, if a user
is interested in events occurring in the New York region,
then Brooklyn would also satisfy the condition. Therefore,
all subordinate regions under New York are replaced with
New York.

3) Comparision Methods: We compare our approach with the
traditional Boolean Search baseline, which performs a hard
matching of the text and the given rule. We also adopt some
advanced text classification baselines, each utilizing different
structures for text embedding. The TextCNN [7] approach
employs convolutional kernels of various heights to extract
features from the text. BILSTM integrates two layers of LSTM
[9] in opposite directions to capture sequential information.
BiLSTM-2DCNN [23] utilizes two-dimensional convolution
and pgoling operations to derive a text representation. HAN
[10] ynes word-level and sentence-le 4L STM to cap-

ture hical information. LSTM-CA [24] encodes
the ijpdlitjtext using an LSTM layer and lpys capsule net-
wor classification. For the Pre-trai nguage Models

bas
[1
4

thods, we compared with BERKJ3¥] and RoBERTa

dels, which are fine-tuned on t ergency dataset.

Its and Analysis: Table II sho {Sg inference results
r

0 emergency dataset. All the res Ns\are the average of
d experiments. The upper blocRfigr€ludes the results of
basdlines trained solely on emergencyy, While the lower block
Yqprises the results of our paral odels that combine
-
&

[14] with SLN. ¥
-

results of the proposed par2 \model demonstrate a

%ble improvement of 4% in a y and 4.2% in recall
\ pared to the individually train%d\ N. The incorporation

of the JS distance in the joint loss improves the consistency of
the predictions between the classifier and the SLN. Moreover,
the SLN enables more precise handling of user concerns by
separately detecting conjunctive rules. For the hyperparam-
eters, we observed that changing the rule embedding sizes
within the range of 150-250 had trival impacts on performance.
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tractive alternative considering
@) Analysis of The Parallel Stru

/

N
N

)(

Nclassifier (TextCNN [7] in this‘

e

TABLE III
RESULTS (%) OF ABLATION TESTS ON THE SLN MODULES.

SLN Parallel
Model acc. F1 acc. F1

+min + maz,\, 75.9 69.2 93.1 82.4
+CNet + maz,, 76.1 74.9 94.9 94.8
+CNet + DNet,,, - - 96.3 96.2
+min + maz,\ 94.1 94.0 95.6 95.8
+CNet + maz,\ 94.4 94.4 98.1 98.1
+CNet + DNet,,\ 94.4 94.4 98.4 98.4

However, the JS setting had a more substantial influence. The
accuracy varied by up to 2% within the JS range of 0.2-0.8.
5) Ablation Study: In the ablation study, we evaluate the
parts of SLN, particularly focusing on CNet and DNet. We
also evaluate the effect of fine-tuning SLN based on the text-
level supervision. Specifically, we compare the performance
of CNet and DNet implemented with MLP versus min/max
functions. The min function outputs the minimum detection
probability of all terms belonging to the conjunctive formula,
while the maxz function outputs the maximum detection proba-
bility of all conjunctive formulas within the DNF. Additionally,
we compare the performance of the SLN fine-tuned under the
labeled text (w/) with the SLN without fine-tuning (w/o),
where the latter directly outputs the disjunction detection
results % as the inference result.

Table III shows the results of the ablation study. The +min
model refers to replace the CNet with the min function,
while the +maz model is to replace the DNet with the
max function. The +min + max model only adjusts the
parameters in the term detection module during training. From
the results, we can see that the +C'Net + DNet model
achieves the highest average accuracy and F1 score with stable
performances. However, the +mgn + maxr model offers a

re concise structure and com results, making it an
{raining cost.

We conducted an anal-

on SLN and the neural
. We provide statistics on
the number of samples predic; C(Rby the model in different
probability intervals in Figure®Z\We employ False Prediction
Masking (FPM), where the re \) signifies the number after
removing False Negatives, a e green box represents the
number after removing Falgg sitives, as shown in Figure
2(b), (c), and (d). oy

sis of the impact of parallel trgt

Comparing Figure 2(a) wi , there is a notable improve-
ment in recall after joint t Ng. From Figure 2(a) to (c), the
SLN exhibits higher conﬁ@g in assigning low probabilities
(0-0.25) due to its logical 1 nce certainty. From Figure 2(a)
to (d), TextCNN demonstrates high confidence in assigning
high probabilities (0.75-1) because of its ability to capture
semantic information. After joint training, TextCNN assigns
higher probabilities to positive samples (0.5-0.75) to (0.75-1),
indicating increased confidence in True Positive predictions.
The SLN assigns lower probabilities to negative samples (0.25-

erated by randomly extractin
\L 5), rules generated using Boo

TABLE IV
THE EXPERT RULES OF THE SAR TASK.

K4  Content K4  Content

K1  {has no right etc.} K¢  {handle, etc.}

K,  {shareholder, etc.} K  {without consent, etc.}
K3  {actual investor.} Kg  {loss, deficit., etc.}
K,  {equity, etc.} Ko  {compensate, etc.}

K5  {pledge, etc.}

T KiN(K2ANK3)VEK7)NKs AKs A Ky

5 Kl/\((K2/\K3)\/K7)/\K4/\K5/\K8/\Kg
r§ KiN(K2V K3V Kr)N\(KsV Kg)

TABLE V
INFERENCE RESULTS (%) WITH DIFFERENT RULES.

Parallel Predictions

prec. rec. F1 acc.
r§ 95.0 97.3 96.1 96.1
TS 95.6 96.7 94.9 96.1
r§ 95.7 98.2 96.9 96.9
r{ 90.6 95.1 92.8 92.6
T4 92.5 92.9 92.6 92.6
rH 94.5 96.2 95.3 95.3
r¥ 95.6 97.9 96.7 96.7

0.5) to (0-0.25), demonstrating higher confidence in True
Negative predictions.

B. Text Review Task

We evaluate our proposed method on another task called
Subjective Answer Grading (SAG). This task is to determine
whether a student answer text, in response to a subjective
question, meets a specific scoring criteria. The scoring criteria
are formalized as rules defined by the graders, containing
keywords and their logical relationships, which describe the
knowledge points required for subjective questions.

1) D and Rules: For this task, an E version of the
datas set is publicly available'. In V, we present
thre provided by the different gra

2) s and Analysis: The results ar sented in Table
II, r5 is used as the user-defin es. Our method
ouff @rms BERT in this task, demonst 1@ the effectiveness

o approach in evaluating both igal matching and
sef ic relevance between student a MWars and the scoring

aluate the effectiveness of our r neration method, we
jed rules generated by various ds to both the SLN
parallel inference and compar% ir performance. The
Is for comparison include expert ygbyided rules (r€x), rules
combining keywords
7 search indicators (r*),
and rules generated by our method (r*). Table V shows the
comparison results. From the results, it is evident that rules
generated by our method closely approach the performance of
expert-provided rules in terms of model performance.

Thttp://splab.sdu.edu.cn/xscg/sjjydm.htm
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Fig. 2. Statistical analysis of the prediction consistency. In each subfigure, the left image represents the independently trained models, while the right image

represents the jointly trained models.

V. CONCLUSION

Our approach integrates user-defined rules with neural text
inference to enhance the model performance and interpretabil-
ity. We employ a parallel framework that includes a neural
classifier and the proposed Semantic-Logic Network to address
the problem of combining explicit rule-based reasoning with
implicit semantic inference. We introduce a JS loss on the par-
allel training to ensure the consistent predictions, which is the
mutual regularization of the models. In the absence of explicit
rules, we employ a boosting strategy to generate valuable rules
from labeled texts. Experimental results demonstrate that our

proach outperforms the baseli thods on tasks such as

xt Review and Text Subscripti nd the generated rules

Ipful on improving the model
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