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Abstract. Keyphrases represent the core content of a document, facil-
itating efficient information processing in knowledge discovery systems. 
Traditional supervised keyphrase prediction methods not only rely on 
labeled data but also lack robustness across diverse domains. Recently, 
with the advancements in pretrained language models, unsupervised 
methods have gained increasing attention. This survey provides a com-
prehensive review of the entire process of unsupervised keyphrase predic-
tion. We begin with an analysis of the linguistic properties of keyphrases, 
aiming to support the design and evaluation of keyphrase prediction 
models. Then, we categorize and discuss the details of existing unsuper-
vised methods for both keyphrase extraction and generation, emphasiz-
ing cutting-edge techniques such as attention mechanisms and prompt 
learning. Additionally, we examine evaluation metrics, introduce a novel 
reference-free metric, and provide a list of open-source datasets. Finally, 
we explore promising future directions and conclude the survey. 

Keywords: Unsupervised Keyphrase prediction · Keyphrase 
extraction · Keyphrase generation · Keyphrase evaluation 

1 Introduction 

Keyphrase prediction(KP) aims to identify a set of phrases from unstructured 
documents that encapsulate the core semantic information of the documents. 
The target elements include present keyphrases, which appear in the source 
document [ 32], as well as absent keyphrases, which are semantically related to but 
exhibit no lexical overlap or only partial overlap with the source document [ 30] 
(Fig. 1). The keyphrase prediction task is categorized into two types: 1)Keyphrase 
Extraction(KPE): Focuses on extracting only present keyphrases; 2)Keyphrase 
Generation(KPG): Generates both present and absent keyphrases. Keyphrases 
play a critical role as information-dense units in supporting downstream tasks 
such as information retrieval [ 7]. 

Traditional keyphrase extraction methods treat a document as a bag of words 
and extract present keyphrases based on expert-defined rules [ 9]. Graph-based 
methods incorporate word relations to obtain the relevance between phrases and 
documents. Supervised neural network models can capture the implicit semantics 
of documents, which enhances keyphrase prediction. 
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Fig. 1. An example from Kp-Biomed [ 17] dataset. The present keyphrases are high-
lighted in blue, and the overlapping parts of the absent keyphrases with the source 
document are outlined in red. (Color figure online) 

However, those supervised models rely on high-cost labeled data and per-
form suboptimally in out-of-domain documents [ 12]. Therefore, unsupervised 
keyphrase prediction, which offers better flexibility and domain generalization, 
have been extensively studied. 
Recent advances in unsupervised keyphrase prediction have focused on lever-

aging pretrained language models(PLMs), particularly large language models. 
They possess strong text understanding and generation capabilities, demonstrat-
ing impressive performance in zero-shot NLP tasks. Cutting-edge techniques 
based on PLMs, such as prompt learning, have significantly enhanced the perfor-
mance of unsupervised keyphrase prediction. Nonetheless, challenges still remain, 
including the tendency to generate repetitive keyphrases and the difficulty in pro-
ducing absent keyphrases. 
To address these challenges and advance the optimization of unsupervised 

keyphrase prediction models, this survey provides a systematic analysis of 
the task . The primary contributions are summarized as follows: 

1. Analysis of Keyphrase Properties. We analyze the intrinsic linguistic 
properties of keyphrases, providing insights for model design and evaluation. 

2. Taxonomy of Unsupervised Keyphrase Prediction Methods. We 
categorize unsupervised keyphrase extraction and generation methods, with a 
focus on state-of-the-art representative techniques. 

3. Evaluation Metrics: Discussion and Proposal. We comprehensively 
review existing evaluation metrics and introduce a novel reference-free metric 
designed to enhance evaluation robustness. 
The remainder of this paper is organized as follows: Sect. 2 emphasizes the 

properties of keyphrases and provides an overview of the keyphrase prediction 
task. Sects. 3 and 4 introduce unsupervised methods for keyphrase extraction and 
generation, respectively. Sect. 5 explores current evaluation metrics, proposes 
new reference-free metrics, and enumerates relevant datasets. Sect. 6 discusses 
future directions for unsupervised keyphrase prediction. Sect. 7 concludes the 
survey. 

2 Overview 

2.1 Keyphrase Property Analysis from a Linguistic Perspective 

To guide the design and evaluation of keyphrase prediction models, we analyze 
the syntactic and semantic properties of keyphrases from a linguistic perspective.
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Syntactic Properties. Syntactic properties refer to the structural characteris-
tics that keyphrases should have in terms of their grammatical form. Firstly, 
keyphrases can be categorized into present and absent keyphrases based on 
whether their constituent words appear consecutively in the source text(Fig. 1). 
According to statistics from [ 30], present keyphrases constitute 55.69% of the 
Inspec dataset [ 18], 44.74% of the Krapivin2009 dataset [ 24], 67.75% of the 
NUS dataset [ 33], and 42.01% of the SemEval dataset [ 22], with the remain-
ing keyphrases being absent. Further research [ 6] redefined absent keyphrases, 
replacing the binary classification with a four-class system. Building on this, the 
Kp-Biomed biomedical dataset was developed [ 17]. 

Secondly, keyphrases have no fixed length or boundary restrictions and are 
typically composed of zero or more adjectives followed by one or more nouns. 
They should preserve the original word forms as in source documents, avoiding 
unnecessary length or redundancy. Therefore, we define the first property of a 
keyphrase as conciseness. Conciseness means that a keyphrase should be a noun 
phrase reflecting the content of the source document without adding or omitting 
boundary words. For example, in Fig. 1, “Chromophore-assisted light inactiva-
tion” becomes unnecessarily long when extended to “Chromophore-assisted light 
inactivation method”, as “method” does not add thematic relevance. Conversely, 
shortening it to “light inactivation” omits the critical modifier “Chromophore-
assisted”, failing to capture the original meaning. 

Semantic Properties. Semantic properties refer to the meaning characteristics 
that keyphrases should possess. Based on previous studies [ 13, 52], a keyphrase  
collection should summarize document essentials and ensure inter-document dis-
tinctiveness. This contrasts with the “high-quality phrases” in phrase mining, 
which focuses more on domain popularity. 

From the perspective of the relationship between keyphrases and the source 
document, we define the second property of a keyphrase set as coverage. Cover-
age refers to the extent to which the keyphrase set captures the document’s topics 
while preserving critical information. While information loss is inevitable when 
transforming a long document into keyphrases, a good keyphrase set minimizes 
this loss. Additionally, coverage encourages the appearence of absent keyphrases, 
which can better summarize the entire information. For example, in Fig. 1, the  
absent keyphrase “Neurite extension” succinctly encapsulates the main idea of 
the entire abstract at a high level. 

Next, from the perspective of the relationship between keyphrases and the 
domain, we define the third property of a keyphrase as distinctiveness. Distinc-
tiveness refers to a keyphrase’s ability to distinguish the current document from 
others, whether within the same domain or across different domains. Phrases 
commonly used across multiple domains lack distinctiveness. For instance, words 
like “protein” and “cell” are prevalent in the biomedical domain, whereas more 
specific phrases like “cell signaling” are less common and can better differentiate 
the source document (Fig. 1). As keyphrase prediction is increasingly applied to
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domain-specific texts, distinctiveness ensures that keyphrases are more effective 
in supporting the analysis of specialized content. 

2.2 Taxonomies of Unsupervised Keyphrase Prediction Methods 

This survey comprehensively analyze the recent models on unsupervised 
keyphrase prediction, with a particular emphasis on cutting-edge techniques 
involving pretrained language models. As illustrated in Table 1, unsupervised 
keyphrase prediction methods are systematically divided into two principal cat-
egories: unsupervised keyphrase extraction (UKPE, Sect. 3) and unsupervised 
keyphrase generation (UKPG, Sect. 4). The discussion of methods follows the 
chronological development of keyphrase prediction technology. 

Table 1. The taxonomy of representative studies on unsupervised keyphrase prediction 

Category Methods 
Extraction 
Traditional Syntactic Feature PoS-tagging 2003 [ 18], YAKE 2020 [ 9], HAKE 

2022 [ 31] 
Statistical Feature TF-IDF 1972 [ 45], YAKE 2020 [ 9], HAKE 2022 

[ 31] 
Graph-based Expanded Text SingleRank 2008 [ 47], CiteTextRank 2014 [ 16] 

Topic TopicRank 2013 [ 8], MultipartiteRank 2018 [ 4] 
Position PositionRank 2017 [ 14], JointGL 2021 [ 27] 
Embedding JointGL 2021 [ 27] 

PLM-based Embedding Similarity EmbedRank 2018 [ 3], SIFRank 2020 [ 46]; 
MDERank 2021 [ 55], HGUKE 2023 [ 42]; 
CentralityRank 2023 [ 44], HGRRM 2023 [ 57], 
HyperRank 2023 [ 43], INSPECT 2023 [ 19]; 
KPEBERT 2021 [ 55], KeyBART 2021 [ 25] 

Attention Mechanism AttentionRank 2021 [ 11], SAMRank 2023 [ 20] 
Prompt Learning PromptRank 2023 [ 23], KPE-prompt Comparison 

2024 [ 39]; ChatGPT-prompting 2023 [ 40] 
Generation 
Pseudo Data-based From Datasets AutoKeyGen 2022 [ 38], TPG 2024 [ 21], Silk 2024 

[ 5] 
From Corpora OpenDomainKP 2023 [ 12] 

LLM-based Prompt Learning LLMs Prompt Learning 2024 [ 41, 48], Long 
Document Processing 2023 [ 29], Output 
Correction 2024 [ 51] 

* Note: PLM = Pretrained Language Models; LLM = Large Language Models.
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3 Unsupervised Keyphrase Extraction Methods 

3.1 Traditional Unsupervised Keyphrase Extraction 

Traditional unsupervised keyphrase extraction models rely on word-level fea-
tures of the source document, primarily focusing on syntactic and statistical 
information to design matching rules. We introduce them respectively below. 

1) Syntactic Feature-based Methods. Keyphrases are typically noun 
phrases, composed of one or more nouns, which may be preceded by one or more 
adjectives. They can be represented by the part-of-speech pattern <NN.|JJ> 
<NN.*>, where “NN” denotes nouns and “JJ” denotes adjectives. The first step 
of most unsupervised methods is to match candidate phrases from the document 
according to this pattern [ 18]. The process often involves tokenizing the text, 
tagging parts of speech using StanfordCoreNLP tools 1, and selecting phrases 
that match the pattern using NLTK 2. Researchers have also introduced various 
syntactic rules and leveraged morphological features such as phrase length, upper 
cases, and abbreviations [ 9] to minimize the influence of irrelevant terms. 

2) Statistical Feature-based Methods. Words that frequently appear 
in a document but rarely in the corpus are considered more relevant to the docu-
ment and thus have higher TF-IDF scores [ 45] . As a fundamental and effective 
statistical measure, TF-IDF is commonly integrated into unsupervised keyphrase 
extraction methods [ 55]. For example, the AutoKeyGen model [ 38] uses TF-IDF  
to generate pseudo-labels. Additionally, co-occurrence relationships can capture 
the contextual meaning of words by considering their frequent pairings within 
the corpus, assisting in determining the importance of phrases. 

Many traditional keyphrase extraction approaches combine both syntactic 
and statistical features, such as YAKE [ 9] and HAKE [ 31]. These methods 
integrate part-of-speech patterns, word frequency, and other features to select 
keyphrases. By leveraging multiple features, these hybrid methods can capture 
the phrase importance in different dimensions, enabling efficient and domain-
agnostic keyphrase extraction with solid performance. 

3.2 Graph-Based Unsupervised Keyphrase Extraction 

Graph-based unsupervised keyphrase extraction methods determine the impor-
tance of words by modeling their relationships in a graph, where nodes represent 
words and edges denote co-occurrence within a specified window. Later develop-
ments have been made by incorporating the expanded text, topic, position, 
and embedding information to enrich the attributes of nodes and edges. We 
introduce these four aspects respectively below. 

1) Expanded Text-based Methods. Keyphrase sets from similar texts 
often overlap, allowing models to leverage these similarities to enhance the orig-
inal graph’s nodes and edges, highlighting important terms. For instance, the 
SingleRank model [ 47] queries similar documents and builds a graph over the
1 https://stanfordnlp.github.io/CoreNLP/. 
2 https://github.com/nltk. 
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expanded text set. Similarly, the CiteTextRank model [ 16] utilizes the citation 
network of scientific papers to expand the context and constructs a graph based 
on the vocabulary found within the citation context. 

2) Topic-based Methods. Documents typically encompass a central theme 
and multiple sub-themes, each represented by different keyphrases. Assigning 
keyphrases to distinct topics helps prevent the keyphrase set from becoming 
homogeneous. The TopicRank model [ 8] clusters phrases into topics and selects 
the most representative phrase from each topic. The MultipartiteRank model 
[ 4] extends TopicRank by using keyphrases as nodes and creating directed edges 
between nodes from different topics, with no edges within the same topic. 

3) Position-based Methods. Text boundaries, such as titles and paragraph 
beginnings and endings, often contain key content. Therefore, the PositionRank 
model [ 14] prioritizes words appearing at the beginning of the document. The 
JointGL model [ 27] obtains phrase positions using a boundary function db(i) =  
min(i, α(n − i)), where n is the total number of candidate keyphrases and α 
is a hyperparameter controlling the importance of the document boundaries . 
If db(i) < db(j), phrase i is closer to the boundary. Then the JointGL model 
reduces the centrality contribution of j to i, making sure that phrases at the 
start or the end of a document are considered more important than others. 

4) Embedding-based Methods. Pretrained word embeddings capture 
semantic information that can enrich the relationships in a graph. Compared 
to co-occurrence relationships, embedding similarity captures semantic relation-
ships between nodes more effectively, leading to improved performance in unsu-
pervised keyphrase extraction. For instance, the JointGL model [ 27] employs  
BERT [ 10] to encode nodes, with edge weights determined by the dot product 
of their embeddings. Advances in pretrained language models have made graph 
construction based on semantic embedding similarity as the mainstream app-
roach. 

3.3 Pretrained Language Model-Based Unsupervised Keyphrase 
Extraction 

Pretrained language models possess extensive linguistic knowledge and strong 
semantic understanding, making them highly effective for keyphrase extraction. 
As a result, methods based on these language models have gained significant 
attention in recent research, representing the cutting-edge technology. These 
approaches often incorporate techniques such as embedding similarity com-
putation, attention mechanisms, and  prompt learning. Below, we provide 
an overview of these three key techniques. 

Embedding Similarity-based Methods. Pretrained language models encode 
the semantic meaning of text as low-dimensional vectors, which can be used for 
similarity calculation. The EmbedRank model [ 3] uses PLMs to encode the text 
and candidate keyphrases and ranks keyphrases by computing cosine similarity. 
With continuous optimization of pretrained language models, semantic represen-
tation has been significantly improved. For instance, the SIFRank model [ 46]
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enhances the embeddings in EmbedRank with stronger PLMs. Subsequent mod-
els have been continuously refined from various perspectives, including long doc-
ument processing, hierarchical semantic modeling, and task-specific pretraining. 
These advancements are discussed below. 

1) Long Document Processing. When processing long documents, the 
disparity in sequence lengths between candidate keyphrases and the document 
can degrade the accuracy of embedding similarity calculations. To address this 
issue, the MDERank model [ 55] replaces the candidate keyphrases in the source 
document with the [MASK] token to create a masked document, then calculates 
the embedding similarity between the masked document and the source doc-
ument, indirectly ranking the candidate keyphrases. The HGUKE model [ 42] 
uses a subset of the source document as a proxy for the entire text, reducing the 
influence of general content and emphasizing key information. 

2) Hierarchical Semantic Modeling. Directly calculating the embedding 
similarity between candidate phrases and the document overlooks the multi-level 
semantic information within the document, often resulting in a homogeneous 
keyphrase set. To address this, the CentralityRank model [ 44] computes embed-
dings at three levels (word, phrase, and document) and calculates the relevance 
of each candidate phrase to these levels, ranking them accordingly. Similarly, 
the HGRRM model [ 57] assesses sentence importance before ranking keyphrases 
within each sentence. The HyperRank model [ 43] captures hierarchical seman-
tic information in hyperbolic space, facilitating richer tree-like representations. It 
maps both phrase embeddings and document embeddings to the same hyperbolic 
space and then calculates their Poincaré distance, effectively capturing semantic 
proximity. 

Instead of explicitly modeling multi-level semantics at the phrase, sentence, 
and document levels, the INSPECT model [ 19] implicitly captures the topic 
information of the source document. It assigns keyphrases to distinct topics, 
thereby maintaining the diversity of the keyphrase set. 

3) Task-specific Pretraining. To improve keyphrase embedding learning, 
researchers have proposed task-specific self-supervised pretraining tasks. KPE-
BERT [ 55] is further pretrained on BERT with contrastive learning between 
the original documents, document masked important phrases, and documents 
masked with general phrases. Similarly, KeyBART [ 25] employs multi-task pre-
training, including random token masking, keyphrase boundary filling, and 
keyphrase replacement classification. KeyBART significantly outperforms the 
original model across multiple tasks, including keyphrase extraction and named 
entity recognition. 

Attention Mechanism-based Methods. The attention mechanism assigns 
context-aware scores to each word position for a given query, capturing their 
semantic relevance within the text. The fixed key-query-value (KQV) matrices 
in pretrained language models enable direct deployment without retraining. By 
leveraging the attention mechanism, unsupervised keyphrase extraction models 
offer both simplicity and state-of-the-art performance across diverse domains.
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The AttentionRank model [ 11] uses BERT to calculate the self-attention 
scores and cross-attention scores. The self-attention score ac measures the rele-
vance of the candidate phrase c to the original sentence, while cross-attention 
improves the embedding similarity score rc between the phrase and the document. 
The final ranking score for candidate phrases is computed as a linear combination 
of ac and rc. Similarly, the SAMRank model [ 20] defines the importance score of a 
phrase by combining global attention and proportional attention scores. First, it 
extracts the self-attention matrix from models like BERT or GPT-2 to calculate 
the global attention score of a phrase, which is the sum of attention values from 
all other tokens to the phrase. Second, SAMRank calculates the proportional 
attention score by observing that a token attending strongly to an important 
token is itself important. The final importance score for a phrase is the sum of 
its global and proportional attention scores. 
Building on the attention mechanism, leveraging a larger and more advanced 

language model enables more precise attention score computations, leading to 
enhanced task performance. 

Prompt Learning-based Methods. Prompt learning utilizes natural lan-
guage prompts to activate the knowledge embedded in pretrained language mod-
els. Task-specific prompt templates can be designed for unsupervised keyphrase 
extraction, applicable to both lightweight pretrained models and large language 
models. 

1) Prompt Learning on PLMs. For instance, the PromptRank model [ 23] 
employs a pretrained language model as its backbone and constructs prompt 
templates such as “Book: [Document]” and “This book mainly discusses [Candi-
date Phrase]”, where the document and the candidate phrase are dynamically 
inserted. These prompts are then encoded into a shared latent space. The rele-
vance of between the candidate phrase and the document is determined by the 
probability of generating c. The probability is calculated in Eq. 1, where  j is 
the starting position of the candidate phrase, lc is the length of the candidate 
phrase, and α is a hyperparameter to control the model’s bias towards shorter or 
longer phrases. Additionally, based on the assumption that important informa-
tion often appears at the beginning of the document, PromptRank introduces a 
position penalty rc. The final score for the candidate phrase is then computed 
as sc = rc × pc. 

pc = 
1 

(lc)α 

j+lc−1�

i=j 

log p(yi|y<i) (1) 

Although PromptRank demonstrates strong performance with manually crafted 
prompts, designing effective prompts necessitates domain expertise and rigorous 
experimentation, highlighting the inherent challenges of prompt engineering in 
unsupervised keyphrase extraction. A study [ 39] investigated the effect of prompt 
complexity on keyphrase extraction across six benchmark datasets and multiple 
pretrained models, demonstrating that simpler prompts can match or exceed the 
performance of more complex ones. 

2) Prompt Learning on LLMs. Large language models with increased 
parameter sizes have recently exhibited remarkable performance in various zero-
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shot natural language processing tasks [ 36]. A recent study [ 40] tested various 
natural language prompts using ChatGPT [ 34] for keyphrase extraction. The 
study found that while large language models excel in zero-shot scenarios, they 
underperform state-of-the-art unsupervised keyphrase extraction methods on 
standard automatic evaluation metrics. Moreover, the structure and phrasing 
of prompts significantly influence the extraction results. Future research should 
focus on designing more effective prompts to fully harness the potential of large 
language models for unsupervised keyphrase extraction. 

4 Unsupervised Keyphrase Generation Methods 

4.1 Pseudo Data-based Unsupervised Keyphrase Generation 

Supervised neural network models have achieved state-of-the-art performance on 
keyphrase generation tasks. However, the scarcity of high-quality labeled data 
makes synthetic data a viable alternative for training. Synthetic pseudo data is 
typically derived from two sources: existing datasets and external corpora. The 
following section outlines the two primary ways for generating such data. 

From Datasets. Texts from the same dataset typically belong to a common 
domain, such as the KP20k [ 30] dataset for computer science, leading to overlap-
ping keyphrase sets across documents. Thus, the AutoKeyGen model [ 38] uses  
KP20k to generate pseudo-labels. It first adds noun phrases from the dataset into 
a phrase bank, then obtains the candidate set based on their occurrence in the 
input document. Then, the ranked candidate phrases are chosen as pseudo-label 
data to train a sequence-to-sequence model. 

However, directly constructing the phrase bank from datasets neglects the 
varying importance of different textual components. To address this limitation, a 
recent study [ 21] generates pseudo-labels from document titles, enhancing absent 
keyphrase generation by prioritizing title significance. Similarly, the Silk model 
[ 5] generates pseudo-labels from citation contexts by applying principles of impor-
tance, relevance, and reliability, achieving robust performance across domains 
such as natural language processing, astrophysics, and paleontology. However, it 
relies on domain-specific datasets to construct effective pseudo-labels for diverse 
fields. 

From Corpora. Pseudo-labels derived from datasets are generally domain-
specific, limiting their applicability for cross-domain training. Cross-domain key-
phrase generation, aiming to generalize models across diverse domains, remains 
a significant challenge. Where data is limited, external corpora offer a viable 
solution for generating pseudo-labels.
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To address cross-domain keyphrase generation, the OpenDomainKP model 
[ 12] extracts grammatically valid noun phrases and their contexts from exter-
nal corpora, constructing a phrase repository. For each phrase z, its context 
is encoded as vz. Similarly, the input text x is encoded as vx, and the cosine 
similarity between vz and vx is computed as their relevance. The top-k most rel-
evant phrases are then retrieved from the repository, forming a pseudo-label set 
that incorporates external knowledge for model training. The OpenDomainKP 
model’s key strength lies in its ability to perform cross-domain unsupervised 
keyphrase generation with minimal modifications. By simply expanding the 
phrase repository, it adapts to diverse domains without requiring domain-specific 
training data. This flexibility opens new avenues for advancing keyphrase gener-
ation, motivating further exploration of effective strategies to leverage external 
corpora. 

4.2 Large Language Model-based Unsupervised Keyphrase 
Generation 

Keyphrase generation requires summarizing a source document using vocabu-
lary that may not explicitly appear in the text, necessitating a profound under-
standing of domain-specific knowledge. Previous unsupervised approaches have 
attempted to address this challenge by using domain-specific pretraining. For 
example, the SciBART [ 50], which was pretrained from scratch on a large-
scale scientific dataset. However, domain-specific pretraining is costly, and the 
obtained models are not easily transferable across different domains. 
In contrast, large language models (LLMs) have richer pretraining corpora 

and more diverse pretraining tasks. They have outperformed traditional PLMs 
on zero-shot tasks [ 36], bringing new opportunities for keyphrase generation. 
Recent research has primarily focused on leveraging prompt learning to generate 
keyphrases in a zero-shot manner. 

Prompt Learning. Leveraging multi-domain and multi-task training, large 
language models generate keyphrases in an unsupervised manner using prompts, 
delivering superior performance in semantic-based evaluations compared to state-
of-the-art unsupervised models, and achieving results comparable to those of 
supervised models. Researchers [ 41] explore the zero-shot keyphrase generation 
capabilities of ChatGPT, focusing on prompt template design and evaluating 
the diversity of generated results. 
Due to the constraints of input length, most models generate keyphrases 

based on truncated text rather than the full document. In contrast, ChatGPT 
allows longer input tokens, and experiments on long document datasets show 
that ChatGPT outperforms all baseline models in keyphrase generation for long 
documents [ 29]. 
Instead of just depending on a single-step prompt, Researchers [ 48] attempt 

to employ LLMs more comprehensively. They simulate the process by which an
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article author selects keyphrases, prompting LLM to 1) directly generate candi-
date phrases from the document; 2) expand candidate phrases into their hyper-
nyms or synonyms; 3) retrieve related candidate phrases from similar documents; 
4) rank all candidate phrases, forming the final keyphrases. This method lever-
ages the zero-shot generation capability, extended token limits, and rich domain 
knowledge of LLMs, providing a new perspective for keyphrase generation. 

LLMs fine-tuned with instructions can adapt well to human commands and 
perform a variety of natural language processing tasks. However, when generat-
ing keyphrases, LLMs often mistakenly lean toward performing “named entity 
recognition” tasks, extracting all entities present in the source document. To 
correct this, researchers [ 51] designed a novel self-consistency decoding process, 
utilizing frequency information to capture the phrases that convey the most 
important information, improving generation results when tested on GPT-3.5-
turbo and GPT-4. It is important to address the “hallucination” problem in 
LLMs to enhance the accuracy of keyphrase generation. 

Although LLMs demonstrate strong performance in generating keyphrases 
from zero-shot prompts, identifying the optimal prompt remains a challenging 
task. Additionally, processing domain-specific texts presents ongoing difficulties. 
Techniques such as prompt engineering and retrieval-augmented generation can 
be employed to enhance performance. 

5 Evaluation Metrics and Datasets 
5.1 Evaluation Metrics 

Keyphrase prediction models can be evaluated in three ways: reference-based 
metrics, reference-free metrics, and human evaluation. Reference-based metrics 
compare the predicted keyphrase set with a reference set (label data), requir-
ing high-quality labels. Reference-free metrics do not rely on labels but need 
to be task-specifically designed. Human evaluation reflects human judgment 
but requires careful design to ensure consistency and reproducibility. Below, we 
describe these three types of evaluation metrics. 

Reference-based Evaluation. A high-quality reference set can act as a rep-
resentative summary of the key information in the source document. Reference-
based evaluation methods assess model performance by measuring the alignment 
between the predicted sets and label sets, which can be calculated by lexical or 
semantic matching. 

1) Lexical Matching. Common metrics include Precision, Recall, and F1-
score, which quantify the phrase-level lexical matching (Eq. 2). Here, TP  refers to 
correctly identified keyphrases, FP  denotes non-keyphrases incorrectly predicted 
as keyphrases, and FN  represents keyphrases missed by the model. In practice, 
Recall@k and F 1@k are commonly used, where k is the number of keyphrases 
for evaluation. Table 2 shows the F 1@5 and F 1@10 performance of some recent 
representative works on Inspec [ 18] and SemEval-2010 [ 22] datasets. 

Precision = TP 
TP + FP Recall = TP 

TP + FN F1-score = 2  × Precision × Recall 
Precision + Recall 

(2)
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Table 2. Performance on Inspec and SemEval-2010 datasets. 

Methods Inspec SemEval-2010 
F1@5 F1@10 F1@5 F1@10 

Present Keyphrases YAKE 18.08 19.62 11.76 14.40 
JointGL 32.61 40.17 13.02 19.35 
MDERank 27.85 34.36 13.05 18.27 
HyperRank 33.35 40.79 14.79 21.33 
SAMRank 33.96 39.35 15.28 18.36 
PromptRank 31.73 37.88 17.24 20.66 
AutoKeyGen 30.30 34.50 18.70 24.00 
KeyBART 30.72 - 20.25 -
ChatGPT 40.10 - 26.20 -

Absent Keyphrases AutoKeyGen - 1.70(R@10) - 1.00(R@10) 
KeyBART 1.83 - 1.12 -
ChatGPT 2.90 - 0.50 -

*Note: Baseline model results are taken from original papers or other studies 
[ 23, 25, 30, 43], and ChatGPT’s results are from [ 41]. 

Based on the fundamental metrics, researchers [ 54] noted the  value of  k in 
F 1@k is typically fixed at 5, 10,or 15. However, the number of keyphrases in 
both the predicted set and the label set is not fixed. Therefore, they proposed 
the F 1@O and F 1@M metrics, where O represents the actual size of the label 
set, and M is the actual size of the predicted set. Although widely used, the F1-
score has limitations in capturing deep semantic meaning, making it a relatively 
weak measurement metric. Consequently, semantic matching has been explored 
as an alternative. 

2) Semantic Matching. SoftKeyScores [ 26] is an evaluation system that 
includes the Keyphrase Match Rate (KMR) and the Score. The lexical metric 
KMR is an adaptation of the Translation Edit Rate (TER), which measures the 
edit distance between two sets of phrases. The semantic metric Score is similar 
to BERTScore [ 56], using embeddings gi and lj from the predicted and label 
embedding sets G and L, applying greedy matching to calculate the maximum 
similarity between phrases. The final score, Fscore, is the harmonic mean of Pscore 
and Rscore (Eq. 3). 

Pscore = 
1 

|G| ·
�

gi∈G 

max 
lj∈L 
score (gi, lj) , Rscore = 
1 

|L| ·
�

lj∈L 

max 
gi∈G 
score (gi, lj) (3) 

KPEval [ 52] includes four metrics (reference agreement, faithfulness, diversity, 
and utility). Reference agreement is a label-based semantic evaluation that shares 
a similar design idea with SoftKeyScores [ 26] and employs cosine similarity to 
measure the relationship between two phrase embeddings.
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Reference-free Evaluation. Labels in datasets are typically annotated by 
authors or experts. Authors with a deeper understanding of the domain tend to 
provide absent keyphrases that summarize the document. In contrast, experts, 
whose domain knowledge may vary, tend to focus on more detailed aspects of the 
document. As a result, the labels can be highly subjective. Evaluating keyphrase 
prediction results solely based on the label sets may be unreliable. To address 
this, reference-free evaluation metrics have been adopted to offer more effective 
and robust assessments. 

1) Existing Metrics. As mentioned above, the KPEval [ 52] includes three 
reference-free metrics. Firstly, the Faithfulness reflects whether keyphrases are 
semantically grounded in source documents. Absent keyphrases are considered 
faithful if they are synonyms, hypernyms, or hyponyms of concepts in the doc-
ument. Present keyphrases are considered faithful if their boundaries are accu-
rately identified (e.g., correctly extracting “NP-hard problem” rather than just 
“hard problem”). Secondly, the Diversity refers whether predicted keyphrases 
includes diverse keyphrases with minimal repetitions, calculated based on lexical 
repetition percentage and semantic similarity between phrases. It is calculated 
based on two components: lexical repetition percentage and average semantic 
similarity between phrases. Thirdly, the Utility is measured by the impact of the 
keyphrase set on downstream information retrieval performance. 

2) A New Metric. Based on the analysis of keyphrase properties in Sect. 
2, we propose an unsupervised keyphrase evaluation metric, termed Coverage, 
which assesses whether a keyphrase set represents the topics of the source doc-
ument without omitting critical information. Specifically, pretrained language 
models are employed to encode the source document at three levels(title, sen-
tence, and full text), yielding a set of vector representations X(xi ∈ X). Concur-
rently, the generated keyphrase set is encoded to corresponding embedding set 
G(gi ∈ G). In contrast to the “Score” metric in SoftKeyScores, the reference set 
for the predicted keyphrases is not the reference set but the multi-level semantic 
embeddings derived from the source document. The final metric FCoverage is 
calculated as the harmonic mean of PCoverage and RCoverage (Eq. 4). 

PCoverage = 
1 

|X|
�

gi∈G 

max 
xj∈X 

x�j ĝi

�xj� �ĝi�
RCoverage = 
1 

|G|
�

xj∈X 

max 
gi∈G 

x�j ĝi

�xj� �ĝi� (4) 

Human Evaluation. Due to the limitations of automatic metrics, human eval-
uation is often used to assess the quality of predicted keyphrases. For a long time, 
human evaluation has been regarded as the golden standard for the quality of 
experimental results, with its authenticity rarely questioned. However, a recent 
study [ 2] reported a review of human evaluation experiments in NLP papers 
over the past five years, finding that their reproducibility was around 5%. Even 
when the original authors were willing to provide assistance, the reproducibility 
of human evaluation experiments was only 20%. Given the absence of a univer-
sal evaluation guideline for human evaluation on keyphrase prediction, ensuring
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Table 3. Statistics of datasets 

Dataset Domain Counts Length Annotator Year 

Short-text Dataset( length<=500 ) 
INSPEC [18] Comp.Science 2000 128 E 2003 
SemEval-2017 [ 1] Science 500 178 E 2017 
KP20k [30] Comp.Science 568k 176 A 2017 
STACKEX [54] Comp.Science 331k 300 A 2019 
KP-Biomed [17] Biomedical 5.9M 271 A 2022 

Long-text Dataset( length>500 ) 
NUS [33] Science 211 7644 A&R 2007 
DUC2001 [47] News 308 740 R 2008 
Krapivin2009 [24] Comp.Science 2304 8040 A 2009 
SemEval-2010 [22] Multi-domain 244 7961 A&R 2010 
OpenKP [53] Multi-domain 148k 900 E 2019 
KPTimes [15] News 280k 921 E 2019 
LDKP3K [28] Science 100K 6027 A 2021 
LDKP10K [28] Science 1.3M 4384 A 2021 
METAKP [51] Multi-domain 7500 Mixed GPT-4&R 2024 

Multi-modal/Multi-lingual Dataset 
Tweet-KP [49] Multi-modal 53781 27 A 2020 
Papyrus [35] Multi-lingual 16427 290–573 A 2022 
EUROPA [37] Multi-lingual 285k 5220 A 2024 
*Note: A for authors; R for Readers; E for Experts 

high consistency between evaluators and acceptable reproducibility remains a 
significant challenge. 

5.2 Datasets 

The datasets for the keyphrase prediction task cover various domains such as 
computer science, news, and biomedicine, with annotations made by authors, 
readers, or experts. We also investigate emerging cross-lingual and multimodal 
keyphrase prediction datasets. Table 3 provides detailed statistical information 
about these datasets, categorized by short-text datasets, long-text datasets, and 
multi-modal/multi-lingual datasets, arranged chronologically. 

6 Challenges and Future Directions 

6.1 Absent Keyphrase Generation 

Generating absent keyphrases is a challenging task that requires a deep under-
standing of semantics and domain-specific knowledge. Absent keyphrases were 
initially defined as phrases that do not match any contiguous subsequence in the 
document [ 30]. Then, according to [ 6], the phrases have been reclassified into 
three types: 1) Reordered keyphrases (constituent words in the text but not con-
tiguous); 2) Mixed keyphrases (some constituent words in the text); 3) Unseen
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keyphrases (no constituent words in the text). Current models primarily gener-
ate reordered keyphrases and place less emphasis on mixed or unseen keyphrases, 
which should be prioritized in future research. 

Large language models can generate high-quality absent keyphrases that per-
form well in both automatic metrics and human preferences. However, challenges 
still remain. For instance, the generated keyphrases are basically a rewrite of the 
phrases in the source document. The hallucination problem, where the model 
generates incorrect or irrelevant phrases, further undermines result accuracy. 
Enhancing keyphrase accuracy in LLMs through prompt engineering, in-context 
learning, and retrieval-augmented generation is a promising research direction. 

6.2 Keyphrase Evaluation 

Current widely used automatic evaluation metrics, such as F1-score and Recall, 
were not specifically designed for the keyphrase prediction task and rely heavily 
on high-quality annotations, limiting their effectiveness. Although many studies 
have sought to improve these methods [ 26, 52, 54], they remain largely dependent 
on label-based evaluation. 

Keyphrases should be noun phrases that reflect the content of the source doc-
ument, preserving its theme and essential information without altering boundary 
words. Based on the analysis in Sect. 2, keyphrase prediction can be evaluated 
in an unsupervised manner from three dimensions: conciseness, coverage, and 
distinctiveness. Conciseness and distinctiveness apply to individual keyphrases, 
while coverage pertains to the entire keyphrase set. Our future work will focus 
on evaluating keyphrases from these three perspectives. 

7 Conclusion 

Unsupervised keyphrase prediction has gained significant improvements with the 
advent of pretrained language models. To comprehensively summarize recent 
advancements in these methods, this survey provides an in-depth analysis of the 
entire task pipeline. We examine the intrinsic characteristics of keyphrases from 
a linguistic perspective, offering valuable insights for model design and subse-
quent evaluation. Furthermore, we present a detailed discussion of unsupervised 
keyphrase extraction and generation methods, encompassing approaches rang-
ing from statistical techniques to deep learning, with an emphasis on emerg-
ing advancements. Additionally, we systematically review evaluation metrics 
for keyphrase prediction, guiding researchers in selecting appropriate metrics 
or designing new ones. Lastly, we share our perspectives on future research of 
keyphrase prediction, aiming to inspire further progress in this field. 
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