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Abstract. Instructions, as the primary means of using large lan-
guage models (LLMs), significantly impact the results. Automati-
cally inducing instructions from few-shot instances is meaningful,
yet the induced instructions suffer from two inherent divergences:
(1) systematic discrepancies across tasks, and (2) instance-level het-
erogeneity within a task. To address these challenges, inspired by hu-
man analogical reasoning, we propose AdaIn, an iteratively adaptive
instruction induction framework that leverages instance-level struc-
tural similarities. AdaIn groups instances by data features to induce
tailored instructions, and adaptively applies them to new samples. In-
struction performance is further utilized to guide updates„ enabling
iterative identification and refinement of ineffective instructions. We
conducted experiments on different tasks to verify our method and
the results demonstrate that it outperforms the SOTA results. Abla-
tion experiments indicate that the adaptive strategy in induction and
selection instruction contributes much to performance.

1 Introduction

Large language models (LLMs) demonstrate robust capabilities
across a diverse range of complex tasks [2, 13, 18]. However, their
inference performance is highly sensitive to input instructions, and
simple prompts often fail to yield optimal results [8, 23, 10]. To max-
imize the task-specific potential of LLMs, users must trial various
instructions. However, manually crafting such instructions is costly,
limiting their ability to fully harness model capabilities.

To efficiently derive suitable natural language instructions, auto-
matic induction methods utilize multiple input–output pairs to gen-
erate instructions through the induction model. However, as shown
in Fig. 1, designing a universal induction framework remains chal-
lenging due to the heterogeneity of task features and the diver-
sity of data features. One challenge is the systematic discrepancies
across tasks, which result in different emphases. For example, trans-
formation tasks prioritize accurate input–output mapping, whereas
classification tasks emphasize the distinction between categories.
Another challenge stems from instance-level heterogeneity within
tasks—such as the number or order of output tokens—which imposes
additional constraints on the induced instructions.

Existing methods include prompt design, feedback updating, and
model fine-tuning. By designing precise prompts, LLMs can effec-
tively conduct automatic prompt engineering [22]. Feedback meth-
ods like APE [24] and APO [12] use natural language gradients to
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Figure 1. The challenges of the Instruction Induction

guide prompt updates. However, these methods do not exploit struc-
tural patterns in labeled samples, which limits their generalizabil-
ity. Fine-tuning with synthetic data can improve instruction induc-
tion [16], but it is limited to open-source models and entails pro-
hibitive costs for large parameter models.

In this paper, we propose an iteratively adaptive instruction in-
duction method, AdaIn. We first analyze the task-specific features
implied in the given instances, and AdaIn builds a preliminary un-
derstanding of the task. Inspired by the human tendency to under-
stand new problems through analogy, we group instances by data
features to induce instructions, which are then adaptively applied to
new samples. To further refine these instructions, we introduce a self-
correction strategy that iteratively identifies key elements through
linguistic analysis and leverages inference results on labeled data as
performance feedback to guide updates. The contributions are as fol-
lows:

• We propose AdaIn, an iterative and adaptive instruction induc-
tion method. By analyzing both task-level and data-level features,
AdaIn induces the instruction set that effectively captures and
adapts to feature variations.

• For task features, inspired by the chain-of-thought paradigm, we
first leverage LLMs to analyze and preliminarily understand task
requirements before instruction induction. We further introduce a
linguistics-based self-correction strategy to refine induced instruc-
tions to enhance their quality.

• For data features, we group similar instances to induce feature-
specific instructions. During inference, the sample-adaptive strat-
egy selects the most suitable instruction for each instance.



Figure 2. Overall framework of Our Method

2 Related Work

2.1 Soft Prompt Update

Soft prompts are trainable vector representations that serve as im-
plicit prompt embeddings, which can be adjusted during training
to optimize model performance [9]. Chen et al. [3] use an open-
source LLM with soft prompts to generate natural language in-
structions, updating the prompts based on instruction evaluation to
enhance zero-shot performance. BBT [15] and BBTv2 [14] itera-
tively query the model’s inference API and apply Derivative-Free
Optimization (DFO) algorithms to refine continuous prompts within
a randomly generated low-dimensional subspace. Deng et al. [5]
propose RLPROMPT, a reinforcement learning–based method that
trains a parameter-efficient policy network to generate optimized dis-
crete prompts, thereby enhancing model performance. PE2 [22] re-
designs the prompt for guiding LLMs in instruction induction by in-
corporating additional components, aiming to more effectively per-
form both the induction and automatic updating processes.

2.2 Natural Language Instruction Induction

Automatic induction methods for generating natural language in-
structions derive instructions from multiple input-output pairs. Or
Honovich et al. [7] design specific prompt templates to guide mod-
els in producing instructions that describe the relationships between
example input–output pairs. The Self-Consistency method [19] sam-
ples multiple candidate instructions from LLMs and applies hypoth-
esis search to select those with better execution performance. ItD
[16] enhances the model’s induction capability through fine-tuning,
thereby improving the quality of induced instructions.

Given the varying quality of instructions generated in a single in-
duction process, many approaches evaluate, filter, and update them to
improve execution accuracy in downstream tasks. The APE method

[24] generates candidate instructions through direct inference and se-
mantic similarity-based sampling, then evaluates and selects them
based on execution accuracy. The ProTiGi algorithm [12] forms nat-
ural language “gradients” from small batches of data to represent
prompt updates, and propagates these gradients into the prompt to
refine it. However, these methods do not fully leverage data features
and lack linguistic knowledge guidance.

3 Method
3.1 Task Description and Framework

Let M denote the induction model. For a given set of labeled in-
stances D(x, y), the goal of instruction induction task is to generate
a set of natural language instructions Γ = {γ1, γ2, . . . , γB} under
the budget B ∈ N+, such that Γ achieves the best expected perfor-
mance over the true data distribution P . Formally,

Γ⋆ = arg max
Γ⊂I,|Γ|≤B

E(x,y)∼P
[
s(Γ, (x, y))

]
(1)

where I denotes the instruction space and s(Γ, (x, y)) is the eval-
uation score of Γ on instance (x, y). Our objective is to induce in-
structions that generalize well to all data drawn from the distribution
P .

Inspired by the way of analogical reasoning (i.e., interpreting
novel tasks through structural similarities), we propose AdaIn, an
iteratively adaptive instruction induction framework that leverages
instance-level similarities. As illustrated in Fig. 2, AdaIn consists of
three phases: (1) Data-Adaptive Instruction Induction, which groups
instances by data features to induce feature-specific instructions;
(2) Instruction Self-Correction and Evaluation, which refines in-
structions and provides iterative update guidance; and (3) Sample-
Adaptive Inference, which enables dynamic instruction selection for
new inputs via similar pattern matching. The following sections
present each phase in detail.



Figure 3. The prompts used in our method.

3.2 Data Adaptive Instruction Induction

According to the Theory of Multiple Representations in cognitive
psychology [1], even for the same task, different data features require
distinct instructions to address the variations effectively. Therefore,
we analyze the data features and task features to enhance instruction
induction.

First, we use LLMs to analyze the given instances to extract their
common characteristics and potential knowledge, helping the induc-
tion model grasp the task’s core rules and requirements. As shown in
Fig. 1, task features vary considerably with task type. For example,
classification tasks focus on input attributes to determine categories,
while transformation tasks emphasize input-output mappings. This
process provides an initial understanding of the task and its relevant
knowledge, thereby guiding subsequent instruction induction.

The diversity of data features is critical for instruction generaliza-
tion, and a single instruction often cannot fully adapt to complex
data. In instruction induction, grouping samples with similar fea-
tures helps improve induction accuracy. We design a data adaptive
instruction induction method to tailor instructions. For each sample,
we randomly select N anchor samples and, for each anchor (xi, yi),
choose its n nearest neighbors based on the feature similarity, form-
ing Groupi. Each group is used as examples in the induction prompt,
from which the model M derives instructions adapted to various fea-
tures:

γind
i = M(Groupi;Pind) (2)

Where γind
i denotes the instruction induced from the Groupi, and

Pind is the instruction induction prompt (see Fig. 3).

3.3 Instruction Self-correction and Evaluation

During our exploration of the instruction induction process, we ob-
served that LLMs often add unnecessary restrictive modifiers, con-
sistent with the findings of Yang et al. [21]. For example, the intended
instruction ’Select and output only the animals from the given inputs’
was induced as ’Choose two animals from the inputs and write them
in reverse alphabetical order’. While some modifiers, such as output
order, do not affect correctness, others—like limiting the number of
animals—can cause execution errors.

Therefore, we propose an instruction self-correction mecha-
nism that removes potentially error-inducing restrictive conditions,

thereby increasing the likelihood of achieving higher execution ac-
curacy. According to linguistic knowledge, the core structure of a
sentence typically consists of verbs and nouns [4, 6]. We extract the
core structure from each induced instruction, removing restrictive
conditions that may cause execution errors. To remove potentially
error-inducing restrictions, we extract the verbs and nouns from each
induced instruction γind (Fig. 3) and generate new instructions γcor ,
forming the self-corrected set Γcor .

Our goal is to select the optimal instruction set. To transform our
problem into an optimization problem, we design a scoring function
s to evaluate the quality of the generated instructions. For each in-
struction γ, we evaluate it on the labeled instances D. The scoring
function s(γ,D) represents the average execution accuracy of in-
struction γ on the labeled instances D.

s(γ,D) =
1

n

n∑
i=1

eval (ŷi, yi) (3)

Here, ŷi represents the output given the instruction γ and input x.
The function eval (ŷi, yi) is used to evaluate the difference between
the output ŷi guided by the instruction and the golden output yi.

In iteration t, we evaluate the induced set Γt, its self-corrected
version Γcor

t , and the previous best set Γ⋆
t−1, selecting the top Bt in-

structions as the new best set Γ⋆
t . These instructions and their scores

are appended to the induction prompt as feedback for the next round.

3.4 Adaptive Instruction Selection and Inference

After T iterations, we obtain the final optimal instruction set Γ⋆
T .

Since no single instruction can address all samples, instruction se-
lection is performed dynamically based on each sample’s features.
Following the Analogical Reasoning Theory, for each new instance,
we retrieve similar labeled ones and extract their effective instruc-
tions to form a tailored subset Γsub.

We design an instruction-sample matrix MT to record the exe-
cution results of each instruction in the final instruction set on the
labeled dataset D. In this matrix, rows represent the instructions in
the instruction set, while the columns represent the labeled instances.
Let mij denote the execution status of the i-th instruction on the j-th
labeled instance.

For a new sample xnew, we retrieve its top-k similar labeled in-
stances and using MT identify the instructions that are effective for
them. These instructions are selected as the instruction subset Γsub.
Inference is then performed via weighted voting over the predictions
from Γsub, where each instruction’s weight reflects its estimated abil-
ity:

ŷ∗ = argmax
ŷ

∑
γi∈Γsub

s(γi,D) · logP (ŷ|xnew, γi) (4)

Here, logP (ŷ|xnew, γi) denotes the log-likelihood of the candidate
output ŷ given the input sample xnew and instruction γi, as computed
by the inference model.

4 Experiments
4.1 Dataset and Setups

We evaluate our method on the Instruction Induction [7] and SNI [20]
datasets. The Instruction Induction dataset consists of 24 sub-tasks,
covering diverse natural language understanding tasks. For the SNI
dataset, we select 10 sub-tasks for experimentation.



To comprehensively assess our approach, we conduct separate ex-
periments on GPT-3.5-Turbo-Instruct [11] and LLaMA2-7B [17].
We select similar samples based on their performance on initial in-
ductive instructions. For each task in datasets, we randomly sample
100 examples as labeled instances, following the same setting as the
baselines. During induction, we set k = 5 similar instances for each
round and set the instruction pool size at B = 7.

4.2 Baselines

We compare AdaIn with the following baseline methods:
APE [24] generates candidate instructions from labeled instances

and selects the best-performing one.
APO [12] constructs a natural language “gradient” from small

data batches to iteratively critique and update the prompt.
PE2 [22] redesigns the prompt by adding targeted components to

better guide the instruction induction and automatic prompt updating.
ItD [16] boosts LLMs’ inductive ability using a Deductive Data

Generation module and a Naive Bayesian Induction module.

5 Results and Analysis
5.1 Main Results

Table 1. The results of the experiments conducted on the 14 subtasks of
the Instruction Induction dataset and the 10 subtasks of the SNI dataset.

DataSet Instruction Induction SNI

Model GPT-3.5 LLaMA2-7B LLaMA2-7B

APE 62.60 32.10 23.02
APO 68.85 23.00 20.28
PE2 69.95 - -
ItD - 31.14 -

Ours (k=1) 74.52 42.61 27.78

We evaluate the execution performance of instructions generated
by our method and the baselines’ on the test set. For our method,
we utilize the final instruction set after iteration, and the accuracy
is measured using the sample-adaptive instruction selection strategy
described in Section 3.4. We report mean and standard deviation over
5 runs. ’–’ indicates experiments that were not conducted due to un-
available code or resource limitations.

AdaIn outperforms all baselines, achieving a higher accuracy
with a lower variance. The performance of the four methods on
Instruction Induction is shown in Table 2. Our method achieves the
highest execution accuracy across different tasks, indicating superior
instruction effectiveness and greater robustness. As shown in Table 1,
under the same LLaMA-7B setting, AdaIn significantly outperforms
the fine-tuning-based ItD, achieving an improvement of 11.47%. On
the SNI dataset, AdaIn also surpasses APE and APO, achieving the
highest execution accuracy and further demonstrating its effective-
ness.

To further investigate the superiority of our approach on the In-
struction Induction dataset, we manually examine the final instruc-
tion set and intermediate results for the translation_en-fr task pre-
sented in Table 2. We found that leveraging data features to guide
the selection of inductive examples helps the model generate higher-
quality instructions. For instance, in the translation_en-fr task, our

method produced the instruction: "Translate the given word into
French using traditional translation techniques, such as grammar
and vocabulary rules." This instruction not only specifies the out-
put goal but also provides detailed guidance, a specificity enabled by
using examples with similar characteristics, which encourages more
informative and well-structured instructions.

5.2 Ablation Study

We conduct ablation studies to evaluate the contribution of each com-
ponent of our method. The experiments are divided into two parts:
the first focuses on the induction process, examining the impact of
task feature extraction, data feature grouping, update guidance, and
self-correction; the second part targets the inference process, specif-
ically evaluating the contribution of the sample-adaptive instruction
selection mechanism.

5.2.1 Ablation on Induction Components

Figure 4. The ablation experiment results conducted on the complete set
of 24 tasks in Instruction Induction.

We present the results of the ablation experiment for each compo-
nent in the induction stage in Fig. 4.

Task and data features enhance instruction quality. We evalu-
ate task feature extraction ("Extraction") and data feature grouping
("Grouping"). Among them, data features contribute the most to per-
formance. The grouping step clusters instances with similar charac-
teristics, enabling the induced instruction set to better capture the di-
versity across samples. Meanwhile, task feature extraction provides
the model with a preliminary understanding of the task by analyz-
ing the given instances and identifying the underlying knowledge re-
quired to solve it.

High-quality induced instructions guide iterative updates. The
second is the addition of update guidance in the induction template,
denoted as ’Guidance’. The update guidance module leverages pre-
viously induced instructions and their evaluations to iteratively refine
instructions more effectively.

The self-correction process helps eliminate redundant con-
straints in induced instructions. The third component, ’Self-
Correction’, removes overly restrictive or potentially error-inducing
conditions from instructions, thereby increasing the likelihood of
achieving higher execution accuracy. Further analysis of this mecha-
nism is provided in Section 5.4.

5.2.2 Ablation on Inference Component

Adaptive instruction selection strategy has better performance
than using the single best-performing instruction. Comparison



Table 2. Results on 14 tasks in Instruction Induction. The results of the comparative methods are derived from PE2 [22].

Task APE APO PE2 Ours (k=1)

Avg↑ Std↓ Avg↑ Std↓ Avg↑ Std↓ Avg↑ Std↓

antonyms 77.60 3.01 77.00 2.67 78.80 3.97 82.80 1.79
informal_to_formal 59.53 3.37 54.10 10.61 61.26 4.73 60.93 3.61

negation 77.80 2.48 75.40 7.17 76.00 7.24 82.40 1.34
orthography_starts_with 63.80 2.14 68.60 2.50 67.60 1.74 69.40 3.21

rhymes 25.60 12.52 56.75 22.72 65.00 19.88 77.20 27.87
second_word_letter 76.20 15.12 94.20 2.32 94.20 1.17 96.80 6.61
sentence_similarity 18.40 4.13 22.20 15.14 20.00 9.84 40.00 4.90

sentiment 88.20 2.79 88.80 2.79 88.80 2.79 91.00 1.41
synonyms 10.40 5.20 27.60 11.71 27.80 8.84 29.20 3.90

taxonomy_animal 80.80 9.06 88.80 7.86 89.00 8.76 93.20 4.15
translation_en-de 85.00 0.89 84.60 0.80 84.40 0.80 84.00 1.58
translation_en-es 84.80 0.98 85.40 0.80 85.40 0.49 88.80 1.30
translation_en-fr 71.80 9.99 81.80 3.66 80.00 3.22 88.60 1.52
word_in_context 56.40 6.92 58.60 7.66 61.00 1.67 59.00 1.58

Average 62.60 5.61 68.85 7.03 69.95 5.37 74.52 4.63

Table 3. Experimental results on the 10 subtasks from the SNI dataset
using llama2:7b.

tasks APO APE Ours(k=1)

identifying_essential_words 19.61 15.24 31.97
conala_max_absolute_value 35.70 23.77 21.61

logic2text_sentence_generation 21.91 19.00 21.52
dart_text_generation 29.67 44.51 47.38

winobias_text_generation 33.85 49.10 36.20
outcome_extraction 12.53 12.72 11.58

tweetqa_question_generation 13.89 12.00 20.21
synthetic_remove_vowels 24.62 24.12 33.75

find_numbers_or_alphabets_in_list 14.67 45.50 51.92
nummersense 3.49 1.31 1.68

avg 20.99 24.73 27.78

Figure 5. Comparison of SO instruction vs. instruction set.

methods often use instructions with the highest execution accuracy
on labeled instances. We refer to this instruction as the SO (Seem-
ingly Optimal) instruction. To validate the advantage of using the
instruction set, we report the execution performance of both the SO
instruction and our instruction set on the test sets of the full 24 tasks
and a subset of 14 challenging tasks. The results are shown in Figure
5. As can be seen, using only the SO instruction for inference on the
test samples results in lower performance compared to using the in-
struction set, regardless of the value of k. This proves that using the

instruction set for inference is effective and that, during the induction
phase, our induction method outperforms other methods. Secondly,
we investigate the impact of the hyperparameter k in the adaptive
instruction selection process. We observe that setting k = 1, i.e.,
selecting the effective instruction corresponding to the most similar
instance, yields the best performance. This can be attributed to the
few-shot nature of the experimental setting, where even the second
most similar instance may exhibit a gap from the test instance. As
a result, incorporating instructions from less similar instances may
introduce noise and negatively affect the final prediction.

Table 4. The execution performance of induced instruction sets across
different LLMs.

SO k=1 k=2 k=3 k=4 k=5

gpt-3.5-turbo-instruct 77.22 79.32 79.26 78.68 78.52 78.55
4o-mini 60.13 61.75 61.75 61.93 61.72 61.16

llama-3.1-8b 56.19 64.68 63.46 63.23 62.55 62.63
llama-3.1-70b 56.20 64.64 63.64 63.55 63.58 63.02
llama-3.1-405b 76.54 79.86 79.08 79.02 78.82 78.56

Figure 6. The impact of instructions selection strategy.

Instruction set improves execution performance across different
LLMs. We also utilize the final generated instruction set to per-



form downstream task reasoning on different models, with the results
shown in Table 4. Regardless of the model used, the overall execu-
tion accuracy of the instruction set is always higher than that of the
SO instruction, no matter the value of k. Additionally, the results in
Table 4 indicate that the choice of reasoning model also affects the
performance of the final instruction subset. As the model parameters
increase, the execution accuracy shows an upward trend.

The effective instructions derived from similar samples can sig-
nificantly enhance execution accuracy. We have designed addi-
tional experiments to further investigate the efficacy of our adaptive
instruction selection based on sample similarity. Under the condition
that all other aspects remain unchanged, for each test sample, we re-
place the instruction subset used for inference on this sample with a
randomly selected instruction subset, ensuring that both subsets are
of the same size. Fig. 6 illustrates the impact of these two different
methods of selecting instruction subsets on the final voting results.
It can be observed that selecting instruction subsets based on sample
similarity enhances the overall execution accuracy of the instruction
set on the test data compared to the random selection method. We
found that as the parameter k decreases, the model’s execution ac-
curacy shows a significant improvement. This phenomenon suggests
that the effective instructions corresponding to the labeled samples
most similar to the current sample’s features are also applicable to
the current sample, thereby effectively validating the hypothesis we
proposed in Section 3.4.

5.3 Analysis of Data Feature

Table 5. Comparison of the instruction’s execution on its corresponding
inductive data and other data.

Inductive data Other data

antonyms 75.43 70.68
informal_to_formal 57.51 53.28

orthography_starts_with 89.71 76.03
translation_en-es 91.43 89.59
word_in_context 62.86 58.38

To verify the effectiveness of data features, we investigate the per-
formance of instructions when applied within inductive data versus
across other data. As shown in Table 5, the inductive data of an in-
struction refers to the labeled examples used to induce it, while the
other data comprises all remaining labeled examples. For each sub-
task, we compute and report the average execution performance of
all instructions in the final instruction set on both their inductive data
and other data. We find that the execution accuracy of instructions on
their original induction groups is significantly higher than on other
groups. This indicates that data features are beneficial for instruction
induction, and highlights the necessity of introducing an instruction
set to handle the diversity of data features.

5.4 Analysis of Self-correction

For each sub-task, we set the instruction set capacity to 7, resulting
in 168 instructions for the 24 sub-tasks. We also provide statistics on
their distribution, showing the round of generation and whether they
were produced through the self-correction process. The statistical re-
sults are shown in Fig. 7. For the complete set of 24 tasks, 60.12%
of the instructions were generated in the third round, and 31.55% of

the instructions were produced by the self-correction process. This
further demonstrates the effectiveness of both self-correction and it-
eration.

Figure 7. The distribution of instructions in the instruction set.

(a) Overall Execution Accuracy for Each Iteration

(b) Execution Accuracy of Each Instruction

Figure 8. Exploration of Iteration Rounds

5.5 Analysis of iteration

To validate the effectiveness of iteration, we demonstrate the capa-
bilities of the instructions in the instruction set after each iteration.
Fig. 8(a) shows the overall execution accuracy of the instruction set
across 24 tasks as iteration rounds increase. Fig. 8(b) presents the
execution accuracy of each instruction in the set after each iteration
for six representative tasks. As can be seen, both the overall exe-
cution accuracy of the instruction set and the execution accuracy of
each instruction improve with each iteration, demonstrating the ef-
fectiveness of iterative updates. Additionally, we further increase the
number of iterations, and as shown in Figure 8(a), after i = 3, the
instruction set’s overall performance plateaus and even begins to de-
cline, proving that 3 iterations is optimal.



5.6 Analysis of Budget B

In practice, B is chosen to balance performance and efficiency. We
set B = 7 in our main experiments, and further evaluate its impact
by reporting average instruction accuracy under different budget set-
tings.

B 3 4 5 6 7

Acc. 78.95 78.90 78.98 79.03 79.32

Table 6. Average instruction accuracy under different budget B settings.

5.7 Empirical Insights

To provide some empirical insights about the linguistics or struc-
tural properties of the self-correction mechanism, we compare
the instructions before and after using self-correction on differ-
ent tasks. We observe that the high frequently removed words
are typically restrictive modifiers—Quantifiers (e.g., each(103),
any(52), all(47), two(56), more(25), some(20), Conjunctions(e.g.,
and(98), with(36), at(36), but(14)), Ordinal markers(e.g., alphabet-
ical(20), first(38), second(13), last(17)), Comparative modifiers(e.g.,
similar(70), same(41), opposite(15)), and Negative modifiers(e.g.,
not(56), no(32), negative(41)), where the number in parentheses in-
dicates the frequency. After a single round of self-correction, the ac-
curacy is improved from 66.82 to 68.14, which demonstrate the ef-
fectiveness in refining the restrictive or misleading expressions.

5.8 Case Study

Table 7. Instruction Set Details per Iteration in the Synonyms Task

iteration 1
Find words that have a similar meaning or concept, but may be expressed differently. 0.29
Read each word and write a synonym or a closely related word as the output. 0.18
"Provide each synonym of the input input as output" 0.19
Think of a synonym for each word. 0.11
Define each word by providing a related word or phrase with a similar meaning. 0.15
For each input word, provide a synonym or another related word as the output. 0.15
For each input word, write a word or phrase with a similar meaning or connotation. 0.13

iteration 2
Find alternative words to convey the idea that the input conveys the meaning of. 0.25
Identify words that are synonymous or have a closely related meaning and write
them as the output for each input word. 0.32
Find alternative words or phrases that convey a similar idea or meaning as the input. 0.25
Find words that have a similar meaning or connection and use them as output,
while maintaining the original meaning of the input word. 0.31
Use context clues to determine words with similar meanings and provide them
as outputs. 0.28
Think of related concepts when writing about input and use those related words
to generate the output. 0.31
Find and replace synonyms of input with related words. 0.18

iteration 3
Use a thesaurus to find words with similar meanings as the input and use these
words as outputs. 0.27
Use a thesaurus to find synonyms of the input words and use them as the output. 0.32
Use a thesaurus to find synonyms or related words for the input and use them as
the output. 0.37
Use a thesaurus to find words with similar meanings and use them as outputs,
while staying true to the original meaning of the input word. 0.36
Use a thesaurus to find alternative words for the input and write them as output. 0.31
Find words that are related to the input in a broader sense and use them as outputs. 0.25
Use a thesaurus to find synonyms and related words to create the output for
each input. 0.33

We present a detailed iterative process for the synonyms task. Ta-
ble 7 illustrates the changes in the set of instructions after each round
of iteration, with three rounds completed in total.

In this task, most labeled examples contained only a single word,
e.g., Input : decide;Output : determine, leading the initially

induced instructions to emphasize that a single synonymous word
is sufficient. However, instructions that encourage the generation of
multiple near-synonyms tend to achieve higher evaluation scores.
Therefore, the blue instruction achieved the highest score in itera-
tion 1. Iterative induction guides the model to generate instructions
similar to high-scoring ones, favoring multi-word outputs that align
better with evaluation criteria.

Table 8. The induction results performed on the modified labeled
instances.

iteration 1
Provide alternative words or phrases that could replace the given input, which have
similar meanings. 0.31
Think of words that have similar meanings to the given input. 0.31
List the synonyms of a word to reflect a potential change between the input and
output. 0.30
Provide alternative words or phrases that have similar meanings for better understanding. 0.32
Provide alternative words or phrases that have similar meanings for the input word.
This will help improve understanding of the input-output relationship. 0.27
Please provide five synonyms or related words for the given input. 0.28
Use synonyms or variations of the given word to expand the output and add more
specific or nuanced terms to describe the input. 0.33

iteration 2
Provide alternative words or phrases with similar meanings for the given input to
improve understanding of the relationship between the input and output. 0.30
Provide different words or phrases that could be substituted for the input to convey
a similar meaning. 0.35
Use a thesaurus to find synonyms of the given input and write them in the output to
add more depth and clarity. 0.36
Provide synonyms or related words for the given input to create a more diverse and
comprehensive output. 0.38
Think of alternative words or phrases that convey a similar meaning to the given
input and use them to create a more nuanced and varied output. 0.36
Provide alternative words or phrases that could replace the given input, which have
similar meanings. 0.31
Encourage the use of vocabulary expansion by providing alternative words or phrases
with similar meanings for a given input. 0.34

iteration 3
Provide alternative words or phrases with similar meanings for the given input to
improve understanding of the relationship between the input and output. 0.30
Provide synonyms or related words for the given input to create a more diverse and
comprehensive output that conveys the same meaning. 0.36
Use a thesaurus or dictionary to find synonyms or related words for the given input
and incorporate them into the output to enhance understanding and diversity. 0.36
Instruction: Enhance understanding of relationships between words by offering synonyms
or related words for the given input to create a more diverse and nuanced output. 0.35
Provide different words or phrases that could be substituted for the input to convey
a similar meaning. 0.35
Use a thesaurus to find synonyms of the given input and write them in the output to
add more depth and clarity. 0.36
Provide synonyms or related words for the given input to create a more diverse and
comprehensive output. 0.38

When data features were adjusted by expanding the number of
synonyms in the output, as shown in Table 8, instructions induced
from the modified annotated data consistently achieved higher scores
under the same number of iterations. This further demonstrates the
significant impact of data features on the instruction induction task.

6 Conclusion

In this paper, we propose the iteratively adaptive instruction induc-
tion method (AdaIn). Through data adaptive instruction induction
and iterative update, the quality of the induced instructions is im-
proved. Additionally, by sample adaptive instruction selection, the
most suitable instructions are automatically chosen based on the fea-
tures of the current sample. We conducted experiments on 24 tasks,
and the results validate our method effectiveness.
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